疟疾是由疟原虫感染引起的,仍然是全球关注的重大健康问题。几十年来,遗传难治性和有限的工具阻碍了我们研究恶性疟原虫(与最严重的疟疾病例相关的寄生虫)中必需蛋白质和途径的能力。然而,近年来,我们在基因操纵恶性疟原虫和有条件控制蛋白质表达/功能的能力方面取得了重大飞跃。恶性疟原虫中使用的条件敲低系统针对中心法则的所有 3 个组成部分,使研究人员能够有条件地控制基因表达、翻译和蛋白质功能。在这里,我们回顾了一些已调整或开发用于恶性疟原虫的常见敲低系统。使用条件敲低方法所做的大部分工作是在无性生殖的血液阶段寄生虫中进行的,但我们也会重点介绍它们在生命周期其他部分的用途,并讨论在红细胞内阶段之外应用这些系统的新方法。随着这些工具的使用,该领域对寄生虫生物学的了解不断增加,并且正在发现抗疟药物开发的有希望的新途径。
生长素诱导降解决定子 (AID) 系统是一种强大的化学-遗传方法,通过小分子进行条件性蛋白酶体降解来操纵内源蛋白质水平。到目前为止,该系统还没有在约氏疟原虫 (P. yoelii) 中进行改造,约氏疟原虫是一种重要且广泛使用的疟原虫啮齿动物寄生虫模型,可用于研究疟疾生物学。在这里,利用 CRISPR/Cas9 基因组编辑方法,我们生成了两种无标记转基因约氏疟原虫寄生虫系 (eef1a-Tir1 和 soap-Tir1),分别在 eef1a 和 soap 启动子下稳定表达水稻基因 tir1。这两条系在寄生虫生命周期中正常发育。在这些背景下,我们使用 CRISPR/Cas9 方法用 AID 基序标记两个基因 (cdc50c 和 fbxo1),并用生长素询问这两种蛋白质的表达。 eef1a - Tir1 系可在无性裂殖体和有性配子体阶段有效降解 AID 标记的内源性蛋白质,而 soap - Tir1 系可在动合子阶段降解蛋白质。这两个系将成为研究基于 P. yoelii 的疟原虫寄生虫生物学的有用资源。
脑疟疾 (CM) 是最致命的严重疟原虫感染形式。目前,我们对疟原虫诱发 CM 的机制了解有限。由啮齿动物寄生虫伯氏疟原虫 ANKA (Pb ANKA) 感染引起的 CM 小鼠模型实验性 CM (ECM) 已被广泛用于研究 CM 的病理生理学。最近的基因组分析表明,Pb ANKA 和密切相关的伯氏疟原虫 NK65 (Pb NK65)(不会引起 ECM)的编码区仅在 21 个单核苷酸多态性 (SNP) 上有所不同。因此,含有 SNP 的基因可能有助于 ECM 的发病机制。虽然这些 SNP 中的大多数位于功能未知的基因中,但有一个 SNP 位于疟原虫 ApiAP2 转录因子家族成员的 DNA 结合位点,我们最近发现它作为毒力因子发挥作用,改变宿主对寄生虫的免疫反应。在这里,我们研究了这种 SNP 对 ECM 发育的影响。我们使用 CRISPR-Cas9 工程寄生虫的结果表明,尽管它具有免疫调节功能,但 SNP 既不是诱导 ECM 的必要条件也不是充分条件,因此无法解释寄生虫菌株在 ECM 表型方面的具体差异。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2020 年 7 月 28 日发布。;https://doi.org/10.1101/2020.04.04.20053504 doi:medRxiv preprint
摘要疟疾是由疟原虫属寄生虫引起的一种威胁生命的疾病,该疾病是通过被感染的蚊子咬伤而传播的。需要快速准确诊断疟疾以按时进行适当的治疗。主要是在发展中国家诊断疟疾的常规显微镜,病理学家在光学显微镜下视觉上检查染色的滑动。然而,由于耗时且结果很难繁殖,因此常规显微镜偶尔被证明是效率低下的。几位研究人员提出了基于计算机视力的疟疾诊断的替代技术。本文的目的是审查,分析,分类和解决计算机辅助诊断疟原虫的最新发展。量化疟疾感染的研究工作包括图像的标准化,分割,然后进行特征提取和分类,本文详细审查了这些图像。在审查的最后,讨论了存在的挑战以及可能的研究观点。
Vivaxim 是一种疫苗,用于帮助 16 岁及以上有患上伤寒和甲型肝炎风险的成年人预防伤寒和甲型肝炎。其工作原理 Vivaxim 的作用原理是让您的身体产生针对伤寒和甲型肝炎感染的自身保护。它通过在血液中产生抗体来抵抗伤寒细菌和甲型肝炎病毒。如果接种疫苗的人接触到伤寒或甲型肝炎生物体,身体通常会准备好消灭它们。您的身体通常在接种疫苗后两周才会产生针对伤寒和甲型肝炎感染的保护。一剂 Vivaxim 可提供初始保护。为了获得对甲型肝炎病毒的长期保护,需要在接种 Vivaxim 疫苗后 6 至 36 个月接种甲型肝炎疫苗加强疫苗。身体不会产生对伤寒的长期保护,需要重复接种疫苗才能保持保护。大多数人都会产生足够的抗体来抵抗伤寒和甲型肝炎感染。但是,与所有疫苗一样,不能保证 100% 的保护。该疫苗不会让你感染伤寒或甲型肝炎。Vivaxim 引起严重反应的可能性很小,但不接种伤寒或甲型肝炎疫苗的风险可能非常严重。
体外生长抑制测定法用于检测恶性疟原虫菌株之间的抗原差异。猫头鹰猴的免疫。营养不良的猴子血清用于抑制八种恶性疟原虫菌株的体外生长。抑制是同源营地菌株的最大抑制作用(平均抑制100 mL/升cAMP-免疫血清)。其他四种菌株被较小程度抑制,三种菌株(FCR-3/FMG,FVO和Smith)在浓度高达400英里/升时并未受到cAMP免疫血清的显着抑制。fcr-3/fmg-rimmune血清,浓度为50 ml!升引起对FCR-3/FMG菌株的显着抑制,而不是cAMP菌株。因此,CAMP和FCR-3/FMG菌株似乎具有不同的抗原决定因素,而这些决定因素是同源性的,但不具有异源,抗血清的。通过免疫血清抑制体外生长可能对肺炎疟原虫的血清分型很有用,并且可能在选择菌株中应用于纳入疟疾疫苗。
1底物残基和底物结合位点的命名法是根据Schechter和Berger(1967)的说法。底物残基是从裂解位点指定为P1,P2,P3等的N末端,以及带有P1',p2',p3'等的C-末端。适当的底物绑定位点用S1,S2,S3等指定。或S1',s2',s3'等。