我们使用van der waals(vdw) - 纠正的密度函数理论和非平衡绿色的功能方法研究了DNA核苷酸酶[腺嘌呤(A),鸟嘌呤(g),胸腺嘧啶(T)和胞嘧啶(C)]与单层Ti 3 C 2 MXEN的相互作用。所有计算均针对石墨烯进行了基准测试。我们表明,取决于Ti 3 C 2表面上方的核碱基的初始垂直高度,可能是两个相互作用机制,即物理吸附和化学吸附。对于石墨烯,与石墨烯片上方核碱基的初始垂直高度无关,DNA核碱始终将物理呈现在石墨烯表面上。石墨烯的PBE + VDW结合能高(0.55-0.74 eV),并遵循G> a> t> C的顺序,吸附高度在3.16–3.22Å的范围内,表明强大的物理学。对于Ti 3 C 2,PBE + VDW结合能相对较弱(0.16-0.20 eV),并遵循A> g = T> C的阶,吸附高度在5.51–5.60Å的范围内,表明弱物理吸收。化学物质的结合能遵循g> a> t> c的顺序,这是相同的物理学顺序。结合能值(5.3-7.5 eV)表示非常强的化学吸附(约为物理吸附结合能的40倍)。此外,我们的频带结构和电子传输分析表明,对于物理吸附,频带结构没有显着变化,也没有调制状态的传输函数和设备密度。相对较弱的物理吸附和强烈的化学吸附表明,Ti 3 C 2可能无法使用物理吸附方法鉴定DNA核碱基。
DNA 单链断裂 (SSB) 会破坏 DNA 复制并诱导染色体断裂。然而,SSB 存在于复制叉后还是复制叉前时会诱导染色体断裂尚不清楚。为了解决这个问题,我们利用了缺乏 PARP 活性或 XRCC 1 的 SSB 修复缺陷人类细胞对胸苷类似物 5 - 氯-2 0 - 脱氧尿苷 (CldU) 的极佳敏感性。我们表明,在这些细胞中与 CldU 一起孵育会导致染色体断裂、姐妹染色单体交换和细胞毒性,其机制取决于尿嘧啶 DNA 糖基化酶 (UNG) 的 S 期活性。重要的是,我们表明,在一个细胞周期中 CldU 的掺入仅在下一个细胞周期中才具有细胞毒性,此时 CldU 存在于模板 DNA 中。与此一致的是,尽管 UNG 既能诱导复制叉后新生链中的 SSB,也能诱导复制叉前的模板链中的 SSB,但只有后者会触发叉塌陷和染色体断裂。最后,我们表明 BRCA 缺陷细胞对 CldU 高度敏感,无论是单独使用还是与 PARP 抑制剂联合使用,这表明 CldU 可能具有临床实用性。
在本文最初在线发表的版本中,图 2e 中位点 18 的编辑碱基被标记为 A6 和 A8;它们分别是 A9 和 A11。在补充图 6 中,位点 18 的 x 轴标签从左到右依次为 A2、A3、A4、A6、A8、A16、A17、A19 和 A20;正确的标签为 A5、A6、A7、A9、A11、A19、A20、A22 和 A23。这些错误已在本文的印刷版、PDF 版和 HTML 版中得到更正。
摘要:将基于 mRNA 的疗法递送至围产期大脑在治疗先天性脑部疾病方面具有巨大潜力。然而,促进在此环境中核酸递送的非病毒递送平台尚未得到严格研究。在这里,我们通过脑室内 (ICV) 注射在胎儿和新生小鼠中筛选了多样化的可电离脂质纳米颗粒 (LNP) 库,并确定了一种 LNP 配方,其在围产期大脑中的功能性 mRNA 递送能力比 FDA 批准的行业标准 LNP 更强。在对性能最佳的 LNP (C3 LNP) 进行体外优化以共同递送腺嘌呤碱基编辑平台后,我们改善了新生小鼠大脑中溶酶体贮积症的生化表型,在胎儿非人类灵长类动物模型中展示了原理验证性 mRNA 脑转染,并展示了 C3 LNP 在人类患者来源的脑组织中的体外转化潜力。这些 LNP 可为宫内和产后 mRNA 治疗(包括脑内基因编辑)提供临床可转化平台。关键词:可电离脂质纳米颗粒、先天性脑病、mRNA 递送、基因编辑、胎儿基因治疗
5 浙江农林大学林业与生物技术学院,亚热带森林培育国家重点实验室,杭州 311300 * 通讯作者。电子邮件:mucherow@ornl.gov;chenj@ornl.gov;yangx@ornl.gov † 这些作者对本文贡献相同 注意:本稿件由 UT-Battelle, LLC 根据与美国能源部签订的合同号 DE-AC05-00OR22725 撰写。美国政府保留;出版商在接受文章发表时,承认美国政府保留非排他性、已付费、不可撤销的全球许可,可以为美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众提供这些联邦资助研究的成果。
DNA 编辑酶对 DNA 核碱基进行化学反应。这些反应可以改变修饰碱基的遗传特性或导致基因表达调节。近年来,由于 CRISPR-Cas 系统的出现,人们对 DNA 编辑酶的兴趣日益浓厚,该系统可用于将其 DNA 编辑活动引导至特定的目标基因组位点。在这篇综述中,我们展示了已被重新利用或重新设计并开发为可编程碱基编辑器的 DNA 编辑酶。这包括胞苷和腺苷脱氨酶、糖基化酶、甲基转移酶和脱甲基酶。我们强调了这些酶被重新设计、进化和改进的惊人程度,并将这些集体工程努力作为未来重新利用和设计其他酶家族的典范。总的来说,从这些 DNA 编辑酶衍生的碱基编辑器通过对核碱基的靶向化学修饰促进可编程点突变的引入和基因表达调节。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 6 月 21 日发布。;https://doi.org/10.1101/2023.06.20.545315 doi:bioRxiv preprint
摘要 CRISPR/Cas9 基因编辑彻底改变了利什曼病的病原体利什曼原虫的功能丧失实验。然而,由于利什曼原虫缺乏功能性非同源 DNA 末端连接途径,因此获得无效突变体通常需要额外的供体 DNA、选择与药物耐药性相关的编辑或耗时的克隆分离。因此,目前无法在不同条件下和多种利什曼原虫物种中进行全基因组功能丧失筛选。在这里,我们报告了一个克服这些限制的 CRISPR/Cas9 胞嘧啶碱基编辑器 (CBE) 工具箱。我们利用利什曼原虫中的 CBE 通过将胞嘧啶转化为胸腺嘧啶来引入终止密码子,并创建了用于动基体中 CBE 引物设计的 http://www.leishbaseedit.net/。通过报告基因检测以及针对 L. mexicana 、 L. major 、 L. donovani 和 L. infantum 中的单拷贝和多拷贝基因,我们展示了该工具如何通过仅表达一个单向导 RNA 来有效生成功能性无效突变体,在非克隆群体中达到高达 100% 的编辑率。然后,我们生成了针对利什曼原虫优化的 CBE,并成功地针对质粒文库传递的 L. mexicana 中的功能丧失筛选中的必需基因。由于我们的方法不需要 DNA 双链断裂、同源重组、供体 DNA 或克隆分离,我们相信这首次使通过质粒文库传递在利什曼原虫中进行功能性遗传筛选成为可能。
线粒体内膜的物理和化学特性对常用于核基因组碱基编辑的CRISPR系统提出了挑战,因为其向导RNA不能轻易进入线粒体来编辑线粒体DNA(mtDNA)1。此外,之前鉴定的DNA脱氨酶主要针对单链DNA(ssDNA),这限制了它们在线粒体DNA碱基编辑器的开发中的应用。然而,可以修饰双链DNA(dsDNA)中胞嘧啶的DddA脱氨酶的发现,使得开发线粒体DNA碱基编辑器成为可能,例如DddA衍生的胞嘧啶碱基编辑器(DdCBE)和转录激活因子样效应物(TALE)连接的脱氨酶(TALED)2,3。这些工具依赖于 DddA,但受到其序列偏好以及通过与转录抑制因子 CTCF 4 相互作用对核基因组产生脱靶效应的风险的限制。此外,DdCBE 和 TALED 会编辑目标序列的两条链 2 , 3 ,从而导致不准确。这些限制阻碍了这些工具在研究和治疗由线粒体DNA突变引起的疾病中的应用。
胞嘧啶碱基编辑器 (CBE) 可实现可编程的基因组 C·G 到 T·A 转换突变,通常包含经过修饰的 CRISPR-Cas 酶、天然存在的胞嘧啶脱氨酶和尿嘧啶修复抑制剂。先前的研究表明,利用天然存在的胞嘧啶脱氨酶的 CBE 可能导致无引导的全基因组胞嘧啶脱氨。尽管随后报道了可减少随机全基因组脱靶的改进型 CBE,但这些编辑器的靶向性能可能不理想。本文,我们报告了使用 TadA 的工程变体 (CBE-T) 的 CBE 的生成和表征,这些变体可在序列多样的基因组位点上实现高靶向 C·G 到 T·A,在原代细胞中表现出强大的活性,并且不会导致全基因组突变的可检测升高。此外,我们报道了胞嘧啶和腺嘌呤碱基编辑器 (CABE),它们可催化 A 到 I 和 C 到 U 编辑 (CABE-T)。与 ABE 一起,CBE-T 和 CABE-T 可使用实验室进化的 TadA 变体对所有转换突变进行可编程安装,与之前报道的 CBE 相比,这些变体具有更好的特性。