我们先前的研究表明,靶AID是改进的CRISPR/CAS9系统,促进基础编辑是靶向多个基因的有效工具。针对类胡萝卜素积累的三个基因SLDDB1,SLDET1和SLCYC-B是针对的,并且先前通过Target-AID获得了等位基因变异。在这项研究中,我们表征了新等位基因对植物生长和水果发育以及类胡萝卜素积累的影响,在分离后交叉种群中或组合在无效的自我隔离线中。只有在三个靶基因中携带纯合取代的线和单个突变的隔离后交叉种群的表征,从而隔离了SLDDB1的两个等位基因版本,一种与SLDET1相关,另一个与SlcyC-B分离出来。所有编辑的线都显示出类胡萝卜素积累的变化,对每个单个突变都有添加作用。这些结果表明,目标AID基础编辑技术是创建靶基因的新等位基因变异以改善番茄中类胡萝卜素积累的有效工具。
许多细菌对入侵的噬菌体或质粒具有 II 型免疫力,称为成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关 9 (Cas9) 系统,用于检测和降解外来 DNA 序列。Cas9 蛋白有两个负责双链断裂的核酸内切酶(分别称为 HNH 结构域,用于切割 DNA 双链的靶链,RuvC 结构域用于切割非靶链)和一个单向导 RNA (sgRNA) 结合结构域,其中 RNA 和靶 DNA 链是碱基配对的。三种工程化的单 Lys-to-Ala HNH 突变体(K810A、K848A 和 K855A)表现出对靶 DNA 链切割的增强的底物特异性。我们在本研究中报告,在野生型酶中,在 1mM EDTA 存在下,与催化位点相邻的含 Y836 环(包括 E827-D837)内的 D835、Y836 和 D837 具有无法表征的加宽 1 H 15 N NMR 共振,而环中其余残基具有不同程度的加宽 NMR 光谱。我们发现,野生型酶中的该环在分子动力学 (MD) 模拟期间表现出三种不同的构象,而三个 Lys-to-Ala 突变体
摘要 RAS GTPases 是高度保守的蛋白质,参与有丝分裂原信号的调节。我们之前描述了一种由底物衔接蛋白 LZTR1 形成的新型 Cullin 3 RING E3 泛素连接酶复合物,该复合物结合、泛素化并促进 RAS GTPase RIT1 的蛋白酶体降解。此外,其他人还描述了这种复合物还负责经典 RAS GTPases 的泛素化。在这里,我们分析了果蝇和小鼠中 Lztr1 功能丧失突变体的表型,并证明了它们对 RIT1 直系同源物的生化偏好。此外,我们表明 Lztr1 在小鼠中是单倍体充足的,并且可以通过删除 Rit1 来挽救纯合无效等位基因的胚胎致死性。总体而言,我们的结果表明,在模型生物中,RIT1 直系同源物是 LZTR1 的首选底物。
葫芦科的水果和蔬菜,如黄瓜、甜瓜、西瓜和南瓜,对人类的饮食贡献巨大。基因组编辑技术的广泛使用大大加速了基因功能表征和作物改良。然而,大多数具有经济价值的葫芦科植物,包括甜瓜和南瓜,仍然难以通过标准的农杆菌介导的转化,限制了基因组编辑技术的有效使用。在本研究中,我们使用“最佳渗透强度”策略建立了一种有效的甜瓜和南瓜遗传转化系统。我们利用这种方法的强大功能来靶向 ERECTA 家族受体激酶基因的同源物,并创建等位基因,从而导致甜瓜、南瓜和黄瓜的植物结构紧凑,节间较短。本文介绍的优化转化方法可实现稳定的 CRISPR/Cas9 介导诱变,并为葫芦科作物的功能性基因操作奠定坚实的基础。
触摸神经元。CRISPR-CAS9基因编辑用于将磷酸化T231A,磷酸化模拟T231E和乙酰基模拟的K274/281Q突变引入Tain4 Orf。为简单起见,这些突变体将称为T231A,T231E和K274/281Q。(b,c)第3天的触摸神经元的荧光图像,表达dendra2 :: Taut4转化融合和T231E突变体的单拷贝转基因编码。虚拟的圆圈表示PLM细胞体的位置,显示在插图中。比例尺,0.5 µm。注意,斑点荧光来自后肠中标记为GFP的HSP-60表达式。(c,d)成年第3和第10天,对面板A中列出的菌株的PLM细胞体荧光定量。数据是来自两个独立技术重复的平均值±SD。各个数据点从单独动物的单个PLM细胞中划分值(n = 25±5)。统计分析是通过Tukey的事后测试进行的双向方差分析,在比较包围样品时,*** p <0.001。请注意,左侧条形柱是指单独携带Dendra2报告基因的转基因菌株的荧光定量,而右侧则是指携带Dendra2和HSP-60记者的菌株。(e)表达整合的UPR MT报告基因P HSP-60 :: GFP和单拷贝MOSSCI插入的转基因蠕虫的代表性荧光图像。比例尺,0.5毫米。数据是平均±SD(来自两个独立生物学重复的20只动物)。(f)从面板中列出的菌株的后肠道区域中荧光信号强度定量。ns表示不显着,如通过单向方差分析计算,然后进行Tukey的多重比较测试。
基因组操作是一种有用的方法,可用于阐明发育、生理和行为方面的分子途径。然而,由于缺乏适用于珊瑚鱼的基因编辑工具,因此它们许多独特特征的遗传基础仍有待研究。一种适合应用这种技术的标志性珊瑚鱼群是海葵鱼 (Amphiprioninae),因为它们与海葵共生、雌雄同体、复杂的社会等级、皮肤图案发展和视觉,并且相对容易在水族箱中饲养,因此被广泛研究。在这项研究中,我们开发了一种基因编辑方案,用于将 CRISPR/Cas9 系统应用于眼斑海葵鱼 (Amphiprion ocellaris)。受精卵的显微注射用于证明我们的 CRISPR/Cas9 方法在两个不同靶位点的成功应用:与视觉有关的视紫红质样 2B 视蛋白编码基因 (RH2B) 和与黑色素生成的酪氨酸酶生成基因 (tyr)。对眼斑海马胚胎中测序的靶基因区域进行分析表明,注射胚胎的吸收率高达 73.3%。进一步分析亚克隆的突变基因序列并结合扩增子散弹枪测序表明,我们的方法在 F0 眼斑海马胚胎中产生双等位基因突变的效率为 75% 到 100%。此外,我们清楚地显示了 tyr 突变胚胎的功能丧失,其表现出典型的低黑色素表型。该方案旨在作为进一步探索 CRISPR/Cas9 在眼斑海马中潜在应用的有用起点。眼斑鱼,作为研究小丑鱼和其他珊瑚鱼基因功能的平台。
1分子病毒与细胞生物学研究所,弗里德里希(Friedrich-lioef),弗里德里希(Friedrich-lioef),17493年,格里夫斯瓦尔德(Greifswald),德国insel riems; Julia.hoelper@flim i.de(J.E.H.); katrin.pannhorst@flim i.de(k.p.); lisa.wendt@flim i.de(l.w.); thomasc.mettenleiter@flim i.de(t.c.m.)2爱丁堡大学的罗斯林研究所(Roslin Institute),复活节灌木丛,Midlothian EH25 9RG,英国; fgrey@exseed.ed.ac.uk(F.G.); j.k.baillie@ed.ac.uk(J.K.B.); tim.regan@roslin.ed.ac.uk(T.R.); nick.parkinson@ed.ac.uk(N.J.P。)3重症监护室,爱丁堡皇家公司,爱丁堡EH25 9RG,英国4诊断病毒研究所,弗里德里希·洛夫(Friedrich-Loef),17493年,格雷夫斯瓦尔德(Greifswald) dirk.hoeper@i.de 5病毒学研究所,弗莱堡医学中心 - 79110德国弗莱堡; thiprampai@gmail.com(t.t。); martin.schwemmle@uniklinik-freiburg.de(M.S.)6弗莱堡大学Spemann生物学与医学研究生院,德国79110 79110 Freiburg 7生物学学院,弗莱堡大学,德国79110,德国79110
结直肠癌(CRC)在中国癌症中的发病率最高和第三高死亡率(1,2),大约15%的转移性CRC患者患有BRAF基因突变和预后不良(3,4)。Braf Oncogenes通过激活有丝分裂原活化蛋白激酶(MAPK)途径(5)来促进肿瘤发生,而V600E突变是最常见的BRAF突变。V600E突变患者的死亡风险是野生型BRAF患者的两倍,因为前者中的大多数人都对化疗和靶向药物疗法具有抗性。尽管一些小样本研究表明,与贝伐单抗相结合的三药化疗(FOLFOXIRI)可能会在某种程度上改善这些患者的预后,但生存益处似乎有限(6,7)。因此,对BRAF V600E突变的新型药物和治疗方案的探索构成了紧急的临床优先事项。
摘要:充满活力和气候危机应该对科学家在可再生绿色能源领域中找到解决方案的挑战。在超过二十年的时间里,寻找能源行业的新机会使人们可以观察到氢作为能源的潜在使用。科学家为了将其用作能源而面临的最大挑战之一是设计安全,可用,可靠和有效的氢存储形式。此外,要存储氢的方式密切取决于这种绿色能源的潜在用途。在固定用途中,目的是实现容器的高容量密度。但是,从移动应用的角度来看,一个极为重要的方面是使用相对较高密度的轻质储罐的储存。这就是为什么,科学家的重点已放在碳基材料和石墨烯作为H 2存储领域中的视角解决方案的原因。本综述着重于对氢存储的不同方法的比较,主要基于碳基材料,并专注于使用石墨烯及其不同形式的有效材料,以在未来的H 2基于H 2的经济中达到目的。
本文由荣誉计划在内布拉斯加大学 - 林肯大学提供免费和公开访问。已被授权的Nebraska@Nebraska University of Nebraska University of Nebraska -Lincoln的授权管理员所接受,内布拉斯加州林肯大学。