摘要。适当的田间管理需要高精度、高准确度和高分辨率的植物高度测量方法。研究表明,地面激光扫描 (TLS) 适用于捕获农作物等小物体。本文介绍了用于监测中国水稻田植物高度的多时相 TLS 调查结果。在田间试验和农民常规管理的田地上进行了三次活动。高密度的测量点使我们能够建立分辨率为 1 厘米的作物表面模型,可用于推导植物高度。对于两个地点,TLS 得出的植物高度和手动测量的植物高度之间都具有很强的相关性(R 2 = 0.91),这证实了扫描数据的准确性。根据田间试验的植物高度和生物量样本之间的相关性建立了生物量回归模型(R 2 = 0.86)。模拟值和测量值之间的强相关性(R 2 = 0.90)支持了对农民田地的可转移性。独立的生物量测量用于验证时间可转移性。该研究证明了 TLS 在推导植物高度方面的优势,可用于模拟生物量。因此,激光扫描方法是精准农业的一种很有前途的工具。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证出版。
瑞士,2021年。21。研究演讲,ETH董事会,瑞士,瑞士2021。22。年轻教师会议,瑞士化学学会,瑞士伯尔尼,2021年。23。Eurotech研讨会系列,2021。24。研讨会,印度科学研究所,班加罗尔,2021年。25。研究演讲,扩展EPFL能源事件:碳捕获,利用和存储,2021。26。研讨会,国家石墨烯研究所,英国曼彻斯特,2021年。27。研讨会,IBM研究中心,巴西,2021年。28。研讨会,剑桥大学石墨烯中心,2021年。29。研讨会,分离技术研讨会,Yonsei University,2021。 30。 研究演讲,EPFL校友日,2020年。 31。 研讨会,埃克森美孚研究与工程,美国克林顿,2019年。 32。 研讨会,斯德哥尔摩大学,瑞典,2019年。 33。 研讨会,EidgenösscheMitalPrüfungs-und forschungsanstalt(Empa),瑞士,2019年。 34。 研讨会,英国伦敦帝国学院,2018年。 35。 ,马萨诸塞州波士顿的马萨诸塞州理工学院,2018年。 36。 Gaznat全球天然气会议,EPFL,Lausanne,2018年。 37。 研讨会,印度理工学院,印度孟买,2018年。研讨会,分离技术研讨会,Yonsei University,2021。30。研究演讲,EPFL校友日,2020年。31。研讨会,埃克森美孚研究与工程,美国克林顿,2019年。32。研讨会,斯德哥尔摩大学,瑞典,2019年。33。研讨会,EidgenösscheMitalPrüfungs-und forschungsanstalt(Empa),瑞士,2019年。34。研讨会,英国伦敦帝国学院,2018年。 35。 ,马萨诸塞州波士顿的马萨诸塞州理工学院,2018年。 36。 Gaznat全球天然气会议,EPFL,Lausanne,2018年。 37。 研讨会,印度理工学院,印度孟买,2018年。研讨会,英国伦敦帝国学院,2018年。35。,马萨诸塞州波士顿的马萨诸塞州理工学院,2018年。36。Gaznat全球天然气会议,EPFL,Lausanne,2018年。37。研讨会,印度理工学院,印度孟买,2018年。
摘要 许多发育过程依赖于基因表达的精确时间控制。我们之前已经建立了一个理论框架,用于控制如此高的时间精度的调控策略,但这些预测仍然缺乏实验验证。在这里,我们使用控制秀丽隐杆线虫神经母细胞迁移的 Wnt 受体的时间依赖性表达作为可处理系统,在体内研究强大的细胞内在计时机制。单分子 mRNA 定量显示受体的表达呈非线性增加,预计这种动态会提高计时精度,而不受控制的计时丰度呈线性增加。我们表明这种上调依赖于转录激活,为受体表达时间受累积激活剂调控的模型提供了体内证据,当达到特定阈值时,该激活剂会触发表达。这种计时机制在神经母细胞谱系中发生的细胞分裂中起作用,并受分裂不对称的影响。最后,我们表明通过经典 Wnt 通路对受体表达的正反馈可提高时间精度。我们得出结论,通过结合时间守护基因的调节和反馈,可以实现强大的细胞内在计时。
引言:研究脊椎动物的衰老和疾病等复杂生物表型受到规模和速度问题的限制。例如,小鼠天生的长寿命和低通量特性阻碍了迭代遗传学和脊椎动物生物学探索。非洲绿松石鳉鱼 Notho-branchius furzeri(以下简称鳉鱼)因其性成熟时间短(孵化后 3-4 周)和自然压缩的寿命(4-6 个月)而成为克服这一挑战和加速发现的有力模型( Hu and Brunet,2018 ;Kim et al.,2016 )。鳉鱼是实验室培育的脊椎动物模型系统中世代时间最短的(2 个月)( Hu and Brunet,2018 ;Kim et al.,2016 ;Pola čik et al.,2016 ),从而使快速脊椎动物遗传学成为可能。已经开发出一些用于推进鳉鱼遗传研究的工具,包括基因组测序(Reichwald 等人,2015 年;Valenzano 等人,2015 年)、Tol2 转基因(Allard 等人,2013 年;Hartmann 和 Englert,2012 年;Valenzano 等人,2011 年)、CRISPR/Cas9 介导的敲除(Harel 等人,2015 年)和 CRISPR/Cas13 介导的敲低(Kushawah 等人,2020 年)。这种遗传工具包使得人们能够发现衰老的机制(Astre 等人,2022a;Bradshaw 等人,2022;Chen 等人,2022;Harel 等人,2022;Louka 等人,2022;Matsui 等人,2019;Smith 等人,2017;Van
我们与 Rocketmine 合作,开创了新的测绘解决方案。Rocketmine 是一家全球无人机数据服务提供商,为多个行业提供跨大洲的全套交钥匙无人机解决方案,包括采矿、农业、工程、可再生能源、安全和医疗等。这项任务是在加纳/西非赤道丛林环境中勘测 6,500 公顷的区域。这种极端的操作环境为我们的 Trinity F90+ VTOL 无人机解决方案与 Qube 240 LiDAR 有效载荷的组合提供了理想的试验平台。茂密的丛林环境对传统的摄影测量测量技术和 RGB 传感器来说是个问题,因为它们无法穿透地形的各个树层。作为 Quantum-Systems 无人机解决方案在该地区首次积极部署,Rocketmines 团队能够率先使用这项突破性技术并快速收集相关数据以完成任务目标。
量子算法 2,14 – 16 可用于求解薛定谔方程,其资源成本随量子比特数呈多项式增长。不幸的是,目前可用的嘈杂中尺度量子 (NISQ) 硬件 17 存在相对较差的门保真度和较低的量子比特数,18 这带来了两个关键挑战。首先,对于 NISQ 定制的量子算法 19 来说,最小化量子资源非常重要。最突出的 NISQ 方法是混合量子经典算法,如变分量子特征求解器 (VQE)、20,21 量子 Krylov 方法、18,22 – 26
摘要:单核苷酸变异约占人类已知致病遗传变异的一半。通过逆转致病点突变且副作用最小的基因组编辑策略具有巨大的治疗潜力,目前正在被积极推行。碱基编辑和主要编辑等精准高效的基因组编辑策略的出现为核苷酸转换提供了强有力的工具,而不会诱导双链 DNA 断裂(DSB),这在治疗遗传疾病方面显示出巨大的潜力。人们开发了各种各样的碱基编辑器工具包,以提高不同应用环境中的编辑效率和准确性。本文,我们总结了碱基编辑器(BE)的发展、它们的局限性以及基于碱基编辑的治疗策略的未来前景。
威胁处理的动物模型已经超越了杏仁核,以结合分布式神经网络。在人类研究中,近年来,证据加剧了挑战以杏仁核为中心的规范威胁回路,敦促修改威胁概念化。在过去十年中,对感官皮层中威胁处理的大量研究产生了特别有用的见解,以告知重新概念化。在这里,从动物和人类研究中综合发现,我们在感觉皮层中强调了敏感,特定和适应性的威胁表示,这是由于基于经验的感觉编码网络雕刻而引起的。因此,我们建议人类的感觉皮层可以推动“智能”(快速而精确的)威胁评估,从而产生威胁性的感官传入,以引起范围内的网络威胁响应。
本论文研究了使用里德堡原子的量子模拟。量子模拟的理念是使用一个可控性良好的量子系统来模拟另一个量子系统。量子模拟旨在前瞻性地解决经典计算机无法有效处理的具有挑战性的模拟问题,例如探索高度纠缠的多体基态和动力学。我们专注于所谓的模拟量子模拟,这种模拟量子模拟直接实现要模拟的系统,并避免通用门方法的开销。可实现系统的类别取决于底层平台的特性。一般来说,量子模拟平台必须可靠且可控性良好。此外,与退相干时间相比,相互作用必须很快。满足这些要求的平台例如超导量子比特和捕获离子。另一种方法是在光镊中使用中性原子。可以通过将原子激发到里德堡态(即具有高主量子数的电子态)并利用里德堡原子之间的强偶极相互作用来使原子相互作用。过去十年的快速发展使得使用这种方法模拟任意二维和三维晶格上的各种自旋哈密顿量成为可能,即使在超出精确数值处理的范围内也是如此。本论文涵盖的研究为量子模拟的实验实现提供了理论支持,为这一进展做出了贡献。本论文的重点有两个方面。首先,我们讨论了里德堡相互作用势的计算及其对实验参数的依赖性。其次,我们利用我们对里德堡相互作用的见解,展示了如何将精确的里德堡原子量子模拟应用于研究各种量子自旋模型。具体来说,我们展示了如何研究不同的拓扑相。后者是与巴黎的 Antoine Browaeys 实验小组密切合作进行的。在一个附带项目中,我们与格拉斯哥的 Andrew Daley 小组和 Gregory Bentsen 合作提出了一项用里德堡原子实现快速扰乱自旋模型的提案。下面,我们概述了本论文的章节。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2023年2月16日。 https://doi.org/10.1101/2022.02.09.479779 doi:Biorxiv Preprint