dynein-2是一种大型多蛋白质络合物,可以为纤毛/豆科氏菌中的货物的逆行内部转运(IFT)提供动力,但是该功能下的分子机制仍在出现。独特地,Dynein-2包含两个与两个不同的中间链相互作用(WDR34和WDR60)相互作用的相同力的重链。在这里,我们使用综合方法(包括冷冻电子显微镜和CRISPR/CAS9启用的细胞生物学),通过WDR34和WDR60对Dynein-2功能进行调节。A3.9Å分辨率结构显示了WDR34和WDR60如何使用令人惊讶的不同相互作用来吸引两个重链的等效位点。我们表明,在没有WDR34或WDR60的情况下,纤毛可以组装,但不是两个亚基。Div> Dynein-2依赖性货物的分布更大程度地取决于WDR60,因为WDR60的独特N末端扩展促进了Dynein-2靶向纤毛。引人注目的是,该N末端延伸可以移植到WDR34上并保留功能,这表明它充当了在纤毛基础上组装的IFT“训练”。我们讨论了非结构化系数的使用如何代表IFT火车交互中的新主题。
这种情况主要影响视网膜,这是眼睛背面的专门组织,检测到光和颜色。Leber先天性amaurosis可能是由至少20个基因中的变异(也称为突变)引起的,所有这些基因对于视网膜和正常视力的功能都是必需的。这些基因在视网膜的发展和功能中起多种作用。例如,与该疾病相关的某些基因对于称为感光体的光检测细胞的正常发展是必需的。其他基因参与光转导,进入眼睛的光转换为传播到大脑的电信号。仍然其他基因在纤毛的功能中起作用,纤毛的功能是微观指的突出,从许多类型的细胞表面伸出。纤毛是在视网膜的感光体中发现的,对于视力是必不可少的。
摘要:人类感光细胞的功能依赖于高度特化的纤毛。纤毛功能的紊乱通常会导致感光细胞死亡和视力丧失。视网膜纤毛病是一种遗传多样性的视网膜遗传病,会影响感光细胞纤毛的各个方面。尽管利用动物疾病模型对视网膜纤毛病的理解取得了进展,但它们往往无法准确模拟观察到的患者表型,这可能是由于结构和功能与人类视网膜存在偏差。人类诱导多能干细胞 (hiPSC) 可用于生成替代疾病模型,即 3D 视网膜类器官,其中包含所有主要的视网膜细胞类型,包括带有纤毛结构的感光细胞。这些视网膜类器官有助于研究人类衍生系统中的疾病机制和潜在疗法。三维视网膜类器官仍是一项发展中的技术,尽管取得了令人瞩目的进展,但仍存在一些局限性。本综述将讨论 hiPSC 衍生的视网膜类器官技术现状,该技术可准确模拟与基因(包括 RPGR 、 CEP290 、 MYO7A 和 USH2A )相关的主要视网膜纤毛病。此外,我们还将讨论针对视网膜纤毛病的新型基因治疗方法的开发,包括大基因的传递和基因编辑技术。
智力和发育障碍是由正常神经系统发育引起的。超过1,000个基因与智力和发育障碍有关,推动了努力剖析变异功能以增强我们对疾病机制的理解。本报告在CC2D1A中识别了来自两个来自两个无关家族的四名患者的CC2D1A中的两个新型变异。我们使用多个模型系统进行功能分析,包括爪蟾,果蝇和患者衍生的纤维细胞。我们的实验表明,CC2D1A在纤毛组织中明确表达,其中包括左 - 右组织者,表皮,俯卧导管,肾上腺肾上腺素和脑心室区域。与这种表达模式一致,CC2D1A的丧失导致心脏异质症,囊性肾脏和CSF异常的CSF循环,这是通过缺陷的纤毛发生。有趣的是,当我们分析大脑发育时,突变t t仅在中脑区域显示出异常的CSF循环,这表明局部CSF流动。此外,我们对患者衍生的纤维细胞的分析确定了缺陷的纤毛发生,进一步支持了我们的观察结果。总而言之,我们通过在纤毛生成和CSF循环中建立了新的关键作用来揭示了CC2D1A作用的新知识。
已有15年了,基因疗法一直被视为遗传性视网膜疾病的希望的灯塔。许多临床前研究都集中在具有最大基因表达能力的载体周围,但是尽管基因转移有效,但在各种纤毛病中仍观察到了最小的生理改善。色素型视网膜炎28(RP28)是FAM161A中Bi-Callelic null突变的结果,Fam161a是连接纤毛(CC)结构的必不可少的蛋白质。在缺席的情况下,纤毛杂乱无章,导致外部片段崩溃和视力障碍。在人类视网膜中,FAM161A有两个同工型:带外显子4的长度,而没有它的短。为了恢复FAM161A中的CC,在纤毛混乱开始后不久,我们将AAV载体与启动子活性,剂量和人类同工型进行了比较。虽然所有矢量都改善了细胞存活,但仅使用弱FCBR1-F0.4启动子启用了两种同工型的组合,启用了CC中的精确FAM161A升级和增强的视网膜功能。我们对RP28的FAM161A基因置换的调查强调了精确治疗基因调节,适当的载体给药和两种同工型的递送的重要性。此精度对于涉及FAM161A等结构蛋白的安全基因疗法至关重要。
睫状缺陷引起几种纤毛病,其中一些纤毛发作迟到,这表明cilia被积极维持。仍然,我们对维护的机制的理解很糟糕。在这里,我们显示了果蝇黑色素果ift88(DM IFT88/nompb)继续沿着完全形成的感觉纤毛移动。我们进一步识别无活跃的,果蝇听力和负性持续性行为的TRPV通道亚基,以及尚未表征的果蝇鸟叶尼犬环酶2D(DM GUCY2D/ CG34357)作为DM IFT88货物。我们还显示了DM IFT88与循环酶的细胞内部分的结合,该部分在几种退化性视网膜疾病中是进化保守和突变的,对于DM GUCY2D的纤毛定位而言是不可能的。最后,成年纤维中DM IFT88和DM GUCY2D的急性敲低导致纤毛功能的维持,障碍和刺激性刺激性的行为导致缺陷,但并未显着影响睫状超结构。我们得出的结论是,成人范围内听力的感觉睫状功能涉及DM IFT88及其至少两个信号传导跨膜货物,DM GuCy2D和无效的主动维护程序。
摘要:视网膜是一种对视觉感知至关重要的中枢神经组织,并且非常容易受到环境损害。下脊椎动物视网膜下部激活内在再生机制,以应对由祖细胞专业人群调节的视网膜损伤。哺乳动物视网膜没有可用于激活再生的祖细胞/干细胞的群体,但包含可以将分化细胞的亚种群重新编程为可以将其重编程为视网膜干细胞的纤毛上皮细胞(CE)细胞。尽管具有再生潜力,但衍生自CE的干细胞表现出有限的重编程能力,可能与固有调节机制的表达有关。血小板激活因子(PAF)是在许多细胞中广泛表达的脂质介体,在干细胞增殖和分化中起重要作用。在哺乳动物发育过程中,PAF受体信号传导对视网膜祖细胞周期调节和神经元分化的重要作用,需要进一步研究。在这项研究中,我们的发现提出了CE细胞中PAF受体信号传导的动态作用,从而影响了干细胞特征和神经圈形成。我们表明,在衍生自PE细胞的视网膜祖细胞/干细胞中,PAF受体和与PAF相关的酶被下调。使用拮抗剂阻断PAFR活性增加了特定祖细胞标记的表达,从而揭示了对视网膜组织发育和维持的潜在影响。
发展基因组编辑体现了生物复杂性的演变:为什么某些真核生物携带额外的遗传物质,这些遗传物质是在性爱后以复杂,昂贵且时间的消耗方式进行的?纤毛是该现象的最佳研究模型之一,但是,本研究报告了一个无法检测到的广泛编辑的物种,但是尽管如此,它仍然在DNA修饰和染色质之间存在实质性差异,并在其主动转录的体细胞核和无声生殖线核之间保持了差异。这表明,广泛的基因组编辑不是纤毛核功能分化的先决条件,并挑战了有关编辑的常规理论:作为对移动元素的防御是必要的,并且由于进化棘轮而获得的编辑,就不会丢失。