图1:A。本研究中使用的颗粒和实验方案的特征。从上到下:VLP HIV,像人免疫缺陷病毒的粒子一样; MLV,鼠白血病病毒; HBV,肝素B病毒; AAV,Adeno相关病毒(血清型8和9);电动汽车,细胞外囊泡。需要荧光标记颗粒:可以通过基因组修饰(HIV和MLV的GFP标记)或直接通过在样品中添加荧光团(AAV和HBV的Yoyo-1,EVS的DIO)来实现。潜在的细胞DNA在VLP HIV和EV中以红色表示,MLV中的粉红色病毒RNA和HBV和AAV中的紫色病毒DNA表示。然后将样品稀释。大小由NTA确定HIV,MLV和EVS,以及AAV 37和HBV 38的冷冻EM重建。B.零模式波导设置,用于通过纳米孔转移的颗粒。顺式腔室包含荧光标记的颗粒。在施加压力时,颗粒在跨室中的孔中推动,并在孔末端越过evanevencent的田地区域时照亮。一旦他们离开了毛孔,他们就没有专心和漂白。C.事件的荧光演变是时间和粒子出口快照的函数。归一化强度表示为AAV时间的函数(紫罗兰和红点,平均在n = 50事件上)。通过最大强度分配强度获得归一化强度。时间在事件开始时被重新缩放至零,红点与事件发生前的强度相对应。指数衰减以蓝色表示。孔径400 nm,施加压力为0.5 mbar。帧速率:112 fps。插图:图像尺寸= 10 µm。
背景和目标:通常用于键合的正畸粘合剂可以显着增强细菌生物膜。纳米颗粒具有强大的抗菌特性,而不会损害键强度。因此,本研究的目的是评估壳聚糖和TiO2 NP与正畸底漆对剪切键强度混合的影响。材料和方法:对于这项系统的综述和荟萃分析研究,搜索了Medline(PubMed和Ovid),Science和Scopus等国际数据库,直到2024年10月使用与研究目标相关的关键字。Stata/MP。V17软件用于分析数据。结果:本研究包括十二项体外研究,总样本量为684个人类前美磨牙。SBS得分的平均差异在1%至5%的Chitosan NPS组和对照组之间为-1.11 MPa(MD,-1.11 MPA; 95%CI,-2.27,0.04; P = 0.16)和5.08 MPA(MD,-5.08 MPA; -5.08 MPA; 95%CI; 95%CI,-7.80,-7.80,-7.80,-7.80,-7.80; p.55; p.55; p.55; p.55; p.55; p;比较了1%TiO2 NPS组和对照组之间的平均SBS差异(MD,-0.43 MPA; 95%CI,-0.99,0.12; P = 0.13)。
AG-NP合成的化学方法包括各种有机和无机还原剂(如柠檬酸钠和硼氢化钠)的化学还原方法。尽管这种AG-NP合成方法非常普遍,但绿色合成提供了一种更安全,成本效益和环保替代化学降低的替代品[3,4]。绿色合成的AG-NP在医学,食物保存和水过滤等各个领域都有应用。此外,根据最近的研究,绿色合成的AG-NP具有强大的抗微生物,抗癌和抗氧化活性。对全球医疗保健的最严重威胁之一是存在多药耐药病原体,尤其是引起威胁生命疾病的病原体。为了最好的这些病原体,需要对这些感染的新技术。绿色合成的Ag-NP已被发现有效
对谐振介电纳米结构的操纵对于下一代光子设备至关重要。传统上,研究人员为此目的使用二维或相变材料。然而,前者导致较小的效率,而后者则缺乏持续变化。在这里,我们通过激光诱导的修改提供了另一种方法。cally,通过激光消融过程,我们合成了钼(MOS 2)纳米颗粒(NPS),然后我们通过激光片段来控制其组合。它导致MOS 2转化为其氧化物MOO 3 - X,进而导致光学响应的明显修饰,这是由于其光学常数之间的较大差异。此外,与原始MOS 2和经典的硅NP相比,激光碎片的NP具有更大的光热反应。因此,我们的基于MOS 2的激光可触摸NP为共振纳米光子剂(尤其是光热疗法)开辟了新的观点。
大蒜是一种重要的香料作物,用于调味食品,并且在传统医学中有悠久的使用历史。然而,黑霉菌是一种常见的真菌疾病,影响大蒜,这是由曲霉感染引起的。这种疾病显着影响大蒜的产生和质量。因此,本研究旨在评估新型绿色合成氧化锌纳米颗粒(ZnO-NP)对大蒜中黑色霉菌疾病的抗真菌活性。使用环保绿色合成技术用于使用耐锌细菌serratia sp。产生ZnO-NP。(ZTB24)。在本研究中,实验分析。UV-VIS光谱在380 nm处,透射电子显微镜(TEM),动态光散射(DLS)和ZETA电势证实了Serratia sp的绿色ZnO-NP的成功生物合成。中毒的食物技术和孢子发芽测试揭示了ZnO-NPS在体外条件下对尼日尔的抗真菌活性。通过从感染的大蒜鳞茎中分离出引起疾病的尼日尔真菌的存在,并使用转录序列(ITS)rDNA测序在分子水平上进一步鉴定出来。ZnO-NPS在250μgml-1浓度的ZnO-NP下,菌丝体的生长降至90%,孢子发芽为73%。在大蒜的最终治疗中,在不同浓度(50、100、250和500 ppm)的体内进一步使用了ZnO-NP。在7天和14天后评估了疾病严重程度的百分比,在接种前方法中,500 ppm的ZnO-NP的应用表现出0%的疾病严重程度,而与对照组相比,在接种后14天后,在7天和14天后,黑霉病疾病的疾病严重程度记录为1.10%和0.90%。因此,使用绿色技术合成的ZnO-NP的抗真菌活性为开发天然杀菌剂的开发铺平了道路,为传统化学控制方法提供了可持续可再生的替代方案。
引言纳米技术代表了一个快速增长的领域,在催化,太阳能,废物管理和传感技术中采用了不同的应用。在医疗领域,纳米材料用于药物输送,疾病诊断,心血管疾病的治疗,伤口愈合和抗菌剂的发育。纳米颗粒,尤其是使用贵金属合成的纳米颗粒,表现出在单个分子或散装金属中未发现的独特物理化学特性。Silver nanoparticles, in particular, are widely used due to their versatile applications.然而,纳米颗粒合成的常规方法是昂贵且对环境毒性的,因此需要探索替代性,环保合成方法。使用植物材料对银纳米颗粒的绿色合成提供了一种具有成本效益,快速和环境良性的方法。富含植物成分的植物提取物是银离子的还原剂,促进纳米颗粒合成。诸如温度,pH,植物提取物浓度和硝酸银浓度等因素会影响合成过程。Premna Integiria L.长期以来一直在传统医学中用于其抗菌和抗氧化特性。这项研究旨在使用综合假单胞菌的水叶提取物合成银纳米颗粒,并评估其物理化学特征和生物学活性。
摘要:TIO 2用TIO 2骨料装饰的Tio 2纳米捆绑包在各种温度(170、190、210和230℃)下使用简单且可扩展的热液方法制备。揭示了合成温度是调整纳米表面骨料数量的关键参数。准备好的TIO 2聚集体和纳米束包用于设计阳极材料,其中聚集体调节了相互连接的纳米束结构的孔径和连通性。采用了一种电静态技术来用于TIO 2样品的电化学表征。由于在锂离子电池(LIBS)循环过程中使用TiO 2作为模型材料,讨论了阳极材料的形态与LIBS在循环中的容量保持能力之间的关系。清楚地发现,孔和特定表面积的大小和连通性对电池的LI插入行为,锂储存能力和循环性能产生了惊人的影响。最初的不可逆能力随着特定表面积的增加而增加。随着孔径的增加,介孔释放酶释放菌株的能力更强,从而带来更好的循环稳定性。在230℃的温度下制备的TiO 2粉末显示出最高的排放能力和电荷能力(203.3 mAh/g和140.8 mAh/g)和良好的循环稳定性。
植物学和微生物学系,科学学院,Sohag University,Sohag,82524,埃及。*电子邮件:gem_gad@yahoo.com收到:2024年11月16日,修订:2024年12月2日,接受,接受:2025年12月19日在线发布:2025年2月7日,2025年2月7日摘要:曲线摘要(sumcc 22003)(sumcc 22003)是一种与药物的内生真菌相比,是一种与药物的叶子相比,该植物植物caltroproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproprop- h.--埃及。根据形态和系统发育分析确定了真菌。研究了C. spicifera对生物合成银纳米颗粒(AGNP)的能力。使用UV-VIS光谱,XRD测量,DLS,ZETA电位分析,FTIR和HR-TEM分析来表征生物合成的AGNP。形成的AGNP稳定,分散且球形晶体,平均直径为38.41 nm,ZETA电位为-6.35 mV。FTIR分析证实AGNP用蛋白质封盖。生物合成优化研究表明,1 mM Agno3,5 g生物量重量,pH 10.5和60°C的反应温度是AGNPS生物合成的最佳条件。agnps在不同浓度上对革兰氏阴性细菌,革兰氏阳性细菌和酵母菌的测试物种发挥了显着的抗菌活性,表明它们作为广谱抗菌剂的潜力。大肠杆菌对AGNP(50 µg)的敏感性最高,抑制区直径为23.7±0.3 mm,MIC 4.2±0.1 µg。agnps(50 µg)的抑制区为16.7±0.1 mm,MIC对于白色念珠菌的抑制区为5.7±0.3。关键词:钙髓质Procera,细胞外生物合成,表征,优化,抗菌活性
* 通讯作者:moises.garin@uvic.cat 我们报告了一种通过在纳米颗粒/基底界面的弯月面中毛细管冷凝在纳米尺度上局部输送气相化学蚀刻剂的方法。该过程简单、可扩展且不需要对纳米颗粒进行功能化。此外,它不依赖于材料的任何特定化学性质,除了溶液是水性的和所涉及表面的润湿性之外,这应该使其能够应用于其他材料和化学品组合。具体而言,在这项工作中,我们通过使用暴露于 HF 蒸汽的自组装单层聚苯乙烯颗粒定期对 SiO 2 层进行图案化来演示所提出的工艺。然后使用图案化的 SiO 2 层作为掩模来蚀刻 Si 中的倒置纳米金字塔图案。已经证明了硅纳米图案化适用于从 800 nm 到 100 nm 的颗粒尺寸,对于 100 nm 纳米颗粒,实现了尺寸小至 50 nm 的金字塔。