1分子心脏病学实验室,IRCCS POLICLINICO SAN DONATO,SAN DONATO MILANESE,20097年意大利米兰; alisia.made@grupposandonato.it(a.m.); alessia.bibi@grupposandonato.it(a.b.); santiagonicolas.piella@grupposandonato.it(s.n.p。); roman.tikhomirov@manchester.ac.uk(R.T.); Christine.voellenkle@grupposandonato.it(C.V.); simona.greco@grupposandonato.it(S.G.)2米兰大学生物科学系,20122年米兰,意大利米兰3号奥米奇科学中心COSR,生物信息学实验室,圣拉法尔科学研究所,20132年意大利米兰; garciamanteiga.josemanuel@hsr.it(J.M.G.-M。); tascini.anna@hsr.it(a.s.t.)4 Universit - Vita-Salute San Raffaele,20132年,米兰,意大利5实验室,ISTITUTI CLINICI SCIENSICI MAUGEI MAUGERI IRCCS,意大利27100 Pavia,意大利; carlo.gaetano@icsmaugeri.it 6心脏病学研究所心力衰竭和移植学系,波兰华沙04-628; przemyslaw.leszek@ikard.pl 7成人心脏外科部,IRCCS Policlinico San Donato,San Donato Milanese,20097年意大利米兰; serenella.castelvecchio@grupposandonato.it(s.c。); lorenzo.menicanti@grupposandonato.it(l.m.)*信件:fabio.martelli@grupposandonato.it
衰老会对组织细胞稳态和再生产生负面影响,部分原因是干细胞内在损伤和功能障碍的积累、微环境细胞(组织特异性细胞类型、微血管、成纤维细胞和免疫细胞)的类似功能退化以及微环境炎症(炎症老化)的增加 [1]。细胞衰老是衰老的一个关键特征,传统上被认为是一种被动细胞状态,衰老细胞不可逆地停止增殖,而细胞衰老是一种更具活力和活性的细胞状态,因为衰老细胞会产生和分泌可溶性因子(所谓的衰老相关分泌表型,SASP),这些因子可以影响邻近的细胞和组织 [1]。即使在老年人中,衰老细胞也只占组织细胞的一小部分,但它们通过 SASP 分泌这些信号蛋白,从而造成重大损害。SASP 会诱发炎症和纤维化,并妨碍健康邻近细胞的功能,从而降低整体组织再生能力。由于 SASP,衰老细胞被认为是导致许多疾病和衰老不良副作用的原因。临床和实验证据表明,细胞衰老、衰老细胞积累以及 SASP 成分的产生和释放与年龄相关的心血管疾病 (CVD) 有关,例如心肌缺血和梗塞、糖尿病性心肌病和癌症药物相关的心脏毒性以及由此导致的心力衰竭 [1–4]。然而,衰老细胞在这些疾病中的确切作用尚不清楚,在某些情况下,有报道称衰老细胞既有好处也有坏处 [1–4]。衰老细胞在心脏中短暂出现以应对暂时的压力可能是有益的,急性细胞衰老在心脏发育和再生中具有重要的生理作用;然而,随着衰老过程中衰老细胞在心脏中逐渐积累,它们会导致与年龄相关的心脏功能下降 [1, 2]。哺乳动物的性别(染色体性别)是许多疾病的风险因素,包括衰老、心血管疾病、神经退行性疾病、癌症等。对于每一种疾病,男性和女性在疾病的发展和进展中都表现出不同的特征。迄今为止,对这种差异的细胞和分子基础的研究主要集中在性激素的作用上 [5]。有趣的是,新的研究表明,细胞衰老可能是导致两性差异的原因
中风发作后可以观察到病变部位内过度的免疫激活。脑实质内的这种神经蛋白浮肿代表了先天的免疫反应,以及外周和驻留的免疫细胞之间其他相互作用的结果。累积研究表明,缺血性中风的病理过程与居民和外周免疫有关。脑实质内周围免疫细胞的内部效果隐含导致继发性脑损伤。因此,有必要更好地了解居民和外周免疫反应对缺血性侮辱的作用。在这篇综述中,我们总结了中风发作后的全身免疫力和居民免疫之间的相互作用,并讨论了各种潜在的免疫治疗策略。
高质量的农作物一直是育种者和消费者最关注的方面。然而,作物质量是受遗传系统和环境因素影响的复杂特征,因此,通过传统的育种策略来改善很难改善。最近,CRISPR/CAS9基因组编辑系统,实现了有效的针对性的修改,已彻底改变了大多数作物的质量改进领域。在这篇综述中,我们将CRISPR/CAS9系统的各种基因组编辑能力,例如基因敲除,敲入或替换,基础编辑,主要编辑和基因表达调节。此外,我们重点介绍了在四个主要方面应用CRISPR/CAS9系统的作物质量改进的进步:大量营养素,微量营养素,抗营养因素等。最后,还讨论了基因组编辑在作物质量改进中的潜在挑战和未来观点。
谷氨酸传统上被视为第一个激活NMDAR(N-甲基-D-天冬氨酸受体)依赖性细胞死亡途径1,2中的细胞死亡途径,但使用NMDAR拮抗剂进行了不成功的临床试验,暗示了其他机制3-7的参与。在这里,我们表明谷氨酸及其结构类似物,包括NMDAR拮抗剂L-AP5(也称为APV),通过与酸中毒诱导的中风中神经毒性相关的酸性离子通道(ASICS)介导的稳健性电流4。谷氨酸增加了ASIC对质子的亲和力及其开放概率,从而在体外和体内模型中加剧了缺血性神经毒性。定向诱变,基于结构的建模和功能测定法显示ASIC1A外细胞外结构域中的真正的谷氨酸结合腔。计算药物筛选确定了一个小分子LK-2,该分子与该空腔结合并废除了ASIC电流的谷氨酸依赖性增强,但避免了NMDARS。lk-2减少了缺血性中风的小鼠模型中的梗塞体积并改善了感觉运动恢复,让人联想到在ASIC1A敲除或其他阳离子通道4-7的小鼠中看到的。我们得出的结论是,谷氨酸是ASIC的阳性变构调节剂,以加剧神经毒性,并优先针对NMDARS上的ASIC上的谷氨酸结合位点靶向,以开发NMDAR Antagonist的精神病性副作用,以开发中风治疗。
Troke是全球第二大死亡原因和残疾的主要原因,2019年归因于中风的660万人死亡。1个基于证据的再灌注疗法,包括触发性肢体分解2,3和机电血栓切除术(MT),4种被广泛用于中风治疗。尽管这些治疗方法发生了不同,但大约50%的患者仍在中风后3个月经历残疾,4强调了这种治疗方法的复杂性和持续的辩论。这种动态景观强调了需要新的治疗选择和扩展治疗窗口的需求。细胞疗法通过调节免疫反应,提供神经保护作用6并恢复受伤大脑中的神经回路,从而在增强功能性重复方面有希望5。7各种细胞类型(间充质干细胞,骨覆盖单核细胞,8个神经干细胞,9和诱导的实力干细胞7,10)和给药途径(内部,动脉内和脑内和脑内11-13)在不同的时间(数小时到几个月)中探索了11-13。4,14
急性缺血性卒中(AIS)是全球范围内致残的首要原因,在AIS的超急性期,血管再通治疗具有重要的意义。但血管再通后的再灌注损伤和出血性转化是AIS预后不良的因素。如何尽量减少再灌注损伤和出血性转化,从而大大改善血管再通的预后,成为AIS研究的热点和亟待解决的问题。目前有大量的神经保护药物研究,但一些神经保护剂在人体研究中失败了。本文在对再灌注损伤和出血性转化病理生理机制的认识的基础上,就AIS的神经保护治疗进展以及探索新型神经保护剂面临的挑战进行综述。
摘要:内源性大麻素(EC)系统是一个复杂的细胞信号系统,自产前时期以来参与大量生物学过程,包括神经系统的发展,脑可塑性和电路修复。这种神经调节系统还参与了对内源性和环境损伤的反应,在预防和/或治疗血管疾病(例如新生儿脑损伤后的中风和神经保护)方面具有特殊相关性。导致新生儿脑病的围产期缺氧 - 异常是一种毁灭性的疾病,除了中度低温外,没有治疗方法,这在某些情况下仅有效。因此,此概述对EC系统的主要组成部分(包括大麻素受体,配体和相关酶)提供了当前的描述,以随后分析EC系统,作为新生儿神经保护的靶标,特别关注其神经源性潜在的脑损伤后神经源性潜力。
抽象背景研究的目的是使用神经心理学结果量表评估N-PEP-12补充饮食补充对缺血性中风后认知障碍的神经记录的影响。方法这是一种试验随机对照,IV期,学术临床试验,旨在评估单一每日剂量的90毫克N-PEP-12的每日剂量和安全性在90天内支持神经回发现,与对照组相比,对对照组进行了比较,对中年和老年人进行了象征性的iSclatentorial Ischecitorior Stroke prectic ischecitial Stroke。结果研究小组在第90天的基线变化的蒙特利尔认知评估(MOCA),医院焦虑和抑郁量表(HADS) - 焦虑量表,颜色跟踪1和符号搜索(数字不正确)具有统计学意义(Mann -Whitney U检验)。在第90天的MOCA中,观察到有利于N-PEP-12的边界“中间效应”(D Cohen = 0.491,η2= 0.057,OR = 2.436,p = 0.010)。在第90天达到焦虑和颜色踪迹1,对N-PEP-12的“小到中间”效果表示了n-pep-12(d cohen = 0.424,η2= 0.043,OR = 0.043,or = 2.157,p = 0.026; d cohen = 0.481,η2= 0.481,η2= 0.055 = 0.055,或= 0.055,或= 2.39227,p = 0.0013,= 0.0013,= 0.0113,相应地)。对于符号搜索错误,观察到了对照组有利于对照组的“中间”效应(D Cohen = 0.501,η2= 0.059,OR = 2.4811,p = 0.007)。结论该探索性临床试验表明,饮食中补充N-PEP-12的益处有益处,以增强刚关闭性缺血性中风后神经发现的增强。
对成像数据的及时分析对于缺血性中风的情况下,对于适当治疗策略的诊断和决策至关重要。已经为取消计算机辅助系统做出了各种努力,以提高中风诊断和急性中风分流的准确性。人工智能技术的广泛出现已纳入医学领域。人工智能可以在为中风患者提供护理方面发挥重要作用。在过去的几十年中,许多研究探讨了机器学习和深度学习算法在中风管理中的应用。In this review, we will start with a brief introduction to ma- chine learning and deep learning and provide clinical applications of machine learning and deep learning in various aspects of stroke management, including rapid diagnosis and improved triage, identifying large vessel occlusion, predicting time from stroke on- set, automated ASPECTS (Alberta Stroke Program Early CT Score) measurement, lesion segmentation, and predicting treatment outcome.这项工作的重点是提供当前人工智能技术在包括MRI和CT在内的缺血性中风成像中的应用。