为什么有些人更好地识别面孔?发现支持面部识别能力的神经机制已被证明难以捉摸。为了应对这一挑战,我们使用了一种多模式数据驱动的方法,该方法结合了神经影像,计算建模和行为测试。我们记录了具有非凡的面部识别能力的个体的高密度脑电图脑活动 - 超级识别器 - 以及典型的识别剂,以应对各种视觉刺激。使用多元模式分析,我们从1 s的大脑活动中解码了面部识别能力,精度最高为80%。为了更好地理解该解码的机制,我们将参与者的大脑中的表示形式与人工神经网络模型的视觉和语义模型以及参与人类形状和含义相似性的判断的人进行了比较。与典型的识别者相比,我们发现超级识别器的早期大脑表示与视觉模型的中级表示以及形状相似性判断之间的相关性更强。此外,我们发现超级识别器的晚期大脑表示与人工语义模型的表示之间以及含义相似性判断之间的更强关联。总体而言,这些结果表明,大脑处理中的重要个体变化,包括神经计算扩展到纯粹的视觉过程,支持面部识别能力的差异。他们为语义计算与面部识别能力之间的关联提供了第一个经验证据。我们认为,这种多模式数据驱动的方法可能会在进一步揭示人脑中特质识别的复杂性方面发挥关键作用。
1 Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China, 2 Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China, 3 NMPA Key Laboratory for Research and Evaluation of Narcotic and江苏221004,江苏221004,江苏,Xuzhou医科大学,江苏221004,江苏221004,江苏221004,江苏221004,5实验室动物中心,Xuzhou医科大学,江苏221004,江苏,中国惠州313003,惠州中央医院围手术期医学,7,惠州大学医学院,惠州大学医学院,313003,中国8号,第五届临床医学院,北中国医学院,惠州医学院,医院313003,中国居住在中国。 313003,中国和10个麻醉学系,Xuzhou医科大学,江苏221004,Xuzhou医科大学
环境和遗传危险因素及其相互作用对神经发育障碍(NDDS)的病因显着贡献。最近的流行病学研究已将拟除虫菊酯农药作为自闭症和发育延迟的环境风险因素。我们先前的研究表明,小鼠中低剂量的发育暴露于拟除虫菊酯农药三甲虫中,导致大脑和NDD相关行为的男性偏见变化。在这里,我们使用了代谢组学方法来确定由低剂量拟除虫菊酯暴露在发育过程中导致成年男性小鼠脑中最广泛的代谢变化集。使用基于垃圾的设计,我们在怀孕期间将小鼠大坝暴露于三分球蛋白(每3天3 mg/kg或车辆),浓度低于用于调节指导的EPA确定的基准剂量。我们将男性后代提高到了成年,并收集了整个大脑样本,以进行不可靶的高分辨率代谢组学分析。发育暴露的小鼠在116个代谢产物中受到破坏,这些代谢物聚集在叶酸生物合成,视黄醇代谢和色氨酸代谢中。作为交叉验证,我们从同一样品中整合了代谢组学和转录组学数据,这证实了先前的多巴胺信号传导的发现。这些结果表明,发育过程中的拟除虫菊酯暴露会导致成人大脑中叶酸代谢的破坏,这可能会为预防和治疗策略提供依据。
每种 RNA 的水平取决于其产生率和衰变率之间的平衡。尽管先前的研究已经测量了组织培养和单细胞生物中整个基因组的 RNA 衰变,但很少有实验是在完整的复杂组织和器官中进行的。因此,尚不清楚在培养细胞中发现的 RNA 衰变决定因素是否在完整组织中保留,以及它们在邻近细胞类型之间是否不同以及在发育过程中是否受到调节。为了解决这些问题,我们通过使用 4-硫尿苷对整个培养的果蝇幼虫大脑进行代谢标记,测量了全基因组的 RNA 合成和衰变率。我们的分析表明,衰变率范围超过 100 倍,并且 RNA 稳定性与基因功能有关,编码转录因子的 mRNA 比参与核心代谢功能的 mRNA 稳定性低得多。令人惊讶的是,在转录因子 mRNA 中,更广泛使用的转录因子与在发育过程中仅短暂表达的转录因子之间存在明显的界限。编码瞬时转录因子的 mRNA 是大脑中最不稳定的。这些 mRNA 的特点是大多数细胞类型中的表观遗传沉默,如其富含组蛋白修饰 H3K27me3 所示。我们的数据表明存在针对这些瞬时表达的转录因子的 mRNA 不稳定机制,从而可以快速高精度地调节它们的水平。我们的研究还展示了一种测量完整器官或组织中 mRNA 转录和衰减率的通用方法,为了解 mRNA 稳定性在调节复杂发育程序中的作用提供了见解。
GPR4 是一种质子感应 G 蛋白偶联受体,与许多外周和中枢生理过程有关。之前仅通过检测同源转录本或间接使用荧光报告基因来评估 GPR4 表达。在这项研究中,使用 CRISPR/Cas9 敲入技术在 Gpr4 的内源性基因座内编码血凝素 (HA) 表位标签,并使用特定的、特征明确的 HA 抗体可视化小鼠中枢神经系统中的 GPR4-HA;通过互补的 Gpr4 mRNA 检测进一步验证了 GPR4 表达。在有限的一组大脑区域中发现了 HA 免疫反应性,包括后梯形核 (RTN)、血清素能缝核、内侧缰核、外侧隔核和几个丘脑核。 GPR4 表达并不局限于特定神经化学特性的细胞,因为它在兴奋性、抑制性和胺能神经元细胞组中均有发现。尽管内皮细胞中 Gpr4 mRNA 表达清晰,但在脑血管内皮中未检测到 HA 免疫反应性。在 RTN 中,在胞体和血管沿线的近端树突以及脑干腹侧表面检测到 GPR4 表达;在 RTN 投射到两个已知目标区域时未检测到 HA 免疫反应性。GPR4 蛋白在小鼠脑神经元中的这种定位证实了其功能先前涉及的假定表达位点(例如,RTN 调节 CO 2 的呼吸),并为 GPR4 可能在哪些地方参与其他 CO 2 / H + 调节的脑功能提供了指导。最后,GPR4-HA 动物为进一步研究 GPR4 在脑外其他生理过程中的作用提供了有用的试剂。
此公告可能包含前瞻性语句。You can identify these statements by the fact they use words such as “aim”, “anticipate”, “assume”, “believe”, “continue”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “predict”, “project”, “plan”, “should”, “target”, “will” or “would” or the negative of such terms or other similar expressions.前瞻性陈述基于Nyrada对尚未发生的情况和事件的估计,预测和假设。尽管Nyrada认为前瞻性陈述是合理的,但他们不确定。前瞻性陈述涉及已知和未知的风险,不确定性和其他因素,在某些情况下,这些风险可能会导致实际结果,绩效或成就与前瞻性陈述所表达或暗示的情况有重大差异。
在本文中,作者扩展了 [1],并提供了更多关于大脑如何像量子计算机一样运作的细节。具体而言,我们将两个轴突上的电压差假设为离子在空间叠加时的环境,认为在存在度量扰动的情况下的演化将不同于不存在这些波的情况下的演化。由于节点处离子的量子态与“控制”电位的相互作用,这种差异状态演化将对束正在处理的信息进行编码。在退相干(相当于测量)后,离子的最终空间状态被决定,并且它也会在下一个脉冲起始时间重置。在同步下,几个束同步经历这样的过程,因此量子计算电路的图像是完整的。在这个模型下,仅根据胼胝体轴突的数量,我们估计每秒在这个白质束中可能准备和演化出多达 5000 万个量子态,远远超过任何现有量子计算机所能完成的处理能力。关键词
psilocybin是一种天然发生的色氨酸生物碱前药,目前正在研究用于治疗一系列精神疾病。临床前报告表明,含psilocybin的蘑菇提取物或“全光谱”(迷幻)蘑菇提取物(PME)的生物学作用可能与化学合成的psilocybin(PSIL)的生物学作用可能不同。我们将PME与PSIL的影响对雄性C57BL/6J小鼠中的神经可塑性相关的突触蛋白和额叶皮层代谢组纤维的影响,神经可塑性相关的突触蛋白和额叶皮层代谢组纤维的影响。HTR测量在20分钟内显示出PSIL和PME的相似作用。脑标本(额叶皮层,海马,杏仁核,纹状体)使用蛋白质印迹分析突触蛋白,GAP43,PSD95,Synaptophysin和sv2a。这些蛋白质可以用作突触可塑性的指标。治疗三天后,突触蛋白的增加最少。11天后,额叶皮层中的PSIL和PME显着增加了GAP43(分别为p = 0.019; p = 0.039)和海马(P = 0.015; p = 0.027; p = 0.027)和突触possinpocyin and Synaptophysin在海马中(p = 0.041; p = 0.041; p = 0.05)和am amy; p = 0.03(p = 0.03)(p = 0.03);psil在杏仁核中增加了SV2A(p = 0.036),并且PME在海马中这样做(p = 0.014)。在纹状体中,仅PME增加突触素(P = 0.023)。分别分析这些大脑区域对PSD95的PSIL或PME对PSD95没有显着影响。与氧化应激和能量产生途径相关的嘌呤鸟嘌呤,甲黄嘌呤和肌苷显示出从车辆到PSIL再到PME的逐渐下降。的嵌套方差分析(ANOVA)显示,在所有大脑区域中,四种蛋白质中的每一种都显着增加,以进行PME和媒介物控制,而仅在海马和杏仁核中观察到显着的PSIL效应,并且仅在Hippocampus和Amygdala中观察到,并且仅限于PSD95和SV2A。利用毛细管电泳的非靶向极性代谢组学 - 傅立叶变换质谱法(CE-FEFTM)进行了前额叶皮层的代谢组学分析,并在PME和媒介物组之间显示出差异代谢分离。总而言之,我们的突触蛋白发现表明,PME对突触可塑性具有比PSIL更有效,更长时间的作用。我们的代谢组学数据支持从惰性车辆通过化学psilocybin到PME的梯度进一步支持差异效应。需要进一步的研究来确认和扩展这些发现,并确定与单独使用psilocybin相比,可能导致PME效应增强的分子。
摘要:脂质失调与阿尔茨海默氏病(AD)病理有关。转基因AD小鼠模型中淀粉样β(Aβ)斑块病理学的化学分析表明,在β斑块病理学直接接近的微环境中,微环境发生了变化。在小鼠研究中,还报道了与β病理学之间的结构多态性相关的脂质模式的差异,例如弥漫,未成熟和成熟的纤维骨料。迄今为止,尚未对人AD组织的神经脂质微环境变化进行全面分析。Here, for the first time, we leverage matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) through a high- speed and spatial resolution commercial time-of-light instrument, as well as a high- mass-resolution in-house-developed orbitrap system to characterize the lipid microenvironment in postmortem human brain tissue from AD patients carrying Presenilin 1导致AD家族形式的突变(PSEN1)(FAD)。对单个Aβ斑块的空间解决的MSI数据进行询问,使我们能够从富含和耗尽Aβ沉积物的不同子类中验证近40种鞘脂和磷脂物种。其中包括单胞菌 - 旋转酶(GM),神经酰胺单己糖苷(己糖),神经酰胺1-磷酸盐(CERP),神经酰胺磷酸乙醇胺结合物(PE-CER),硫酸磷脂剂(ST),以及磷脂酰糖苷(pi),磷酸酯酸(磷脂酸)(磷酸酯)(磷酸酯)(磷酸化)(磷酸酯) (包括抒情形式)。的确,许多鞘脂种类与先前在转基因AD小鼠模型中看到的物种重叠。有趣的是,与动物研究相比,我们观察到含有蛛网膜酸(AA)的PE和PI物种的定位水平增加。这些发现高度相关,这是人类脂质微环境中与β斑块病理相关的改变。他们为开发潜在的脂质生物标志物的发展提供了基础,以对人类特异性分子途径改变的洞察力进行洞察力。关键词:阿尔茨海默氏病,β-淀粉样蛋白,牙菌病,神经脂肪组学,质谱成像,老年蛋白1■简介
唐氏综合症(DS)中异常的神经发育(通过人类染色体的一式三次造成)通常归因于基因剂量不平衡,将三叶基因的过度表达与破坏的发育过程联系起来,而DYRK1A与DYRK1A特别含义。我们假设,trisomic小鼠中的区域脑DyRK1a蛋白过表达在性别特异性模式中随发育而有所不同,这可能与DyRK1A转录不同,而DyRK1A拷贝数的副本副本数量从否则Trisomic小鼠中的3减少到2,而不是其他曲核小鼠的Dyrk1a,独立于其他trisomamic Genes。dyrk1a的过表达随着年龄,性别和大脑区域而变化,两性的产后日(P)6的峰值过表达。性别依赖性差异也从p15-p24中明显出现。减少DYRK1A拷贝数证实,这些差异取决于Dyrk1a基因剂量,而不是其他三异构体基因。trisomic dyRK1a mRNA和蛋白表达不高度相关。在trisomic神经发育过程中DYRK1A过表达的性别特异性模式可以为DS治疗干预提供机械靶标。