为什么有些人更好地识别面孔?发现支持面部识别能力的神经机制已被证明难以捉摸。为了应对这一挑战,我们使用了一种多模式数据驱动的方法,该方法结合了神经影像,计算建模和行为测试。我们记录了具有非凡的面部识别能力的个体的高密度脑电图脑活动 - 超级识别器 - 以及典型的识别剂,以应对各种视觉刺激。使用多元模式分析,我们从1 s的大脑活动中解码了面部识别能力,精度最高为80%。为了更好地理解该解码的机制,我们将参与者的大脑中的表示形式与人工神经网络模型的视觉和语义模型以及参与人类形状和含义相似性的判断的人进行了比较。与典型的识别者相比,我们发现超级识别器的早期大脑表示与视觉模型的中级表示以及形状相似性判断之间的相关性更强。此外,我们发现超级识别器的晚期大脑表示与人工语义模型的表示之间以及含义相似性判断之间的更强关联。总体而言,这些结果表明,大脑处理中的重要个体变化,包括神经计算扩展到纯粹的视觉过程,支持面部识别能力的差异。他们为语义计算与面部识别能力之间的关联提供了第一个经验证据。我们认为,这种多模式数据驱动的方法可能会在进一步揭示人脑中特质识别的复杂性方面发挥关键作用。
主要关键词