赞助商应进行非临床研究以评估动物模型中的毒性(请参阅第49 II.C.2。,非临床安全考虑)。5我们还建议赞助商进行50项非临床研究,以证明NMIBC中的抗肿瘤活性,并选择将在第一次人类(FIH)试验中评估的研究药物的剂量和51个时间表。对于52次静脉治疗,每周六次装置已成为患有NMIBC患者的患者的标准剂量方案,但很少有数据可以支持这种方法。因此,替代时间表54可能是合适的。一旦赞助了完整的非临床研究,我们建议赞助商55设计一项FIH试验,以评估安全性,耐受性,药代动力学和抗肿瘤活性,而56还探索了剂量和暴露 - 反应关系,如果是可行的,则在后续试验中选择了剂量和剂量 - 响应关系,以将其选择为57。评估抗肿瘤活性的一种选择是58例标记病变的患者,可以在NMIBC的其他区域切除后安全留在原地。59
摘要背景:为了提高在临床环境中最新发现的使用,建立有关膀胱癌分子分类(BC)的共识至关重要。BC仍然是一个重大的全球公共卫生问题。 它是第十个最常见的癌症和全球癌症相关死亡的第13个主要原因。 正在进行开发非肌肉入侵膀胱癌(NMIBC)和肌肉入侵膀胱癌(MIBC)的分类系统,这是由于治疗方法的显着差异。 结论:我们通过各种科学网站(包括原始论文和临床试验)进行了搜索,以探索膀胱癌的分类旅程和每个亚型的基本原理。 在以下手稿中强调了大多数分子分类,目的是在不久的将来具有改善结果的较不久的未来价值。 迫切需要进一步关注分子分类影响的临床试验,以提高对BC的理解和治疗。 关键词:膀胱癌;分子分类; NMIBC,MIBCBC仍然是一个重大的全球公共卫生问题。它是第十个最常见的癌症和全球癌症相关死亡的第13个主要原因。正在进行开发非肌肉入侵膀胱癌(NMIBC)和肌肉入侵膀胱癌(MIBC)的分类系统,这是由于治疗方法的显着差异。结论:我们通过各种科学网站(包括原始论文和临床试验)进行了搜索,以探索膀胱癌的分类旅程和每个亚型的基本原理。在以下手稿中强调了大多数分子分类,目的是在不久的将来具有改善结果的较不久的未来价值。迫切需要进一步关注分子分类影响的临床试验,以提高对BC的理解和治疗。关键词:膀胱癌;分子分类; NMIBC,MIBC
1 UWA医学院,西澳大利亚大学,西澳大利亚大学病理学和实验室医学2学院,西澳大利亚大学,Crawley,Crawley,3 South Metropolitan Health Sealth Service,Murdoch,4 Harry Perkins医学研究院4号解剖学病理学,Harry Perkins医学研究所5癌症试验小组,新南威尔士州露营地,8个医学肿瘤学,彼得·麦卡勒姆癌症中心,彼得·麦卡勒姆爵士医学肿瘤学爵士,墨尔本大学医学肿瘤学系,墨尔本10号莫纳什大学,墨尔本11号莫尔本健康,12个个性化肿瘤学,沃尔特和伊丽莎白
在当今复杂的医疗保健领域中,追求最佳的患者护理,同时导航复杂的经济动态对医疗保健服务提供者(HSP)构成了重大挑战。在这种已经复杂的动态中,基于临床的个性化医学治疗的出现旨在彻底改变医学。个性化医学具有增强治疗结果的巨大潜力,但其在资源约束的HSP中的整合提出了巨大的挑战。在这项研究中,我们研究了实施个性化医学的经济可行性。核心目标是在满足个人患者需求和做出经济可行的决定之间取得平衡。与传统的二元方法进行个性化治疗不同,我们通过将个性化作为频谱提出了更细微的观点。这种方法允许在决策和资源分配中具有更大的灵活性。为此,我们提出了一个数学框架来研究我们的建议,重点是膀胱癌(BC)作为案例研究。我们的结果表明,虽然引入个性化药物是可行的,但是相对于其不太有效但更便宜的替代方案,这是一种非常有效但高昂的药物,因为可以将后者提供给更大的患者,从而更好地优化HSP的目标。
1。Hanna KS和Al。AM J. 2022; 79:629-635。 2。 二十(govitan-sack-saxon)信息处方。 3。 PADCE(Medotin Imfortunate)处方入场。 4。 ma和al。 nat Rev Cancer 2015; 15:25-4 5。 n等。 Jama Oncool 2022; 8:1072-1 6。 Loriot和Al。 n Engel J Med 2019; 381:338-348。 7。 类型AO和Al。 oncol lance 2022; 23:248-258。 8。 Martins F和Al。 nat Rev Clin Oncol 2019; 16:563。 9。 帖子和al。 n Engel J Med 2018; 378:158-1 10。 bj和al。 J Clin Oncol 2021; 39:4073-4 11。 肿瘤学临床NCCN实践。 管理与免疫疗法有关的毒性的管理。 版本1.2024。 /www.norg.pdf.pdf。AM J.2022; 79:629-635。2。二十(govitan-sack-saxon)信息处方。3。PADCE(Medotin Imfortunate)处方入场。4。ma和al。nat Rev Cancer2015; 15:25-45。n等。Jama Oncool2022; 8:1072-16。Loriot和Al。n Engel J Med2019; 381:338-348。7。类型AO和Al。oncol lance2022; 23:248-258。8。Martins F和Al。 nat Rev Clin Oncol 2019; 16:563。 9。 帖子和al。 n Engel J Med 2018; 378:158-1 10。 bj和al。 J Clin Oncol 2021; 39:4073-4 11。 肿瘤学临床NCCN实践。 管理与免疫疗法有关的毒性的管理。 版本1.2024。 /www.norg.pdf.pdf。Martins F和Al。nat Rev Clin Oncol2019; 16:563。 9。 帖子和al。 n Engel J Med 2018; 378:158-1 10。 bj和al。 J Clin Oncol 2021; 39:4073-4 11。 肿瘤学临床NCCN实践。 管理与免疫疗法有关的毒性的管理。 版本1.2024。 /www.norg.pdf.pdf。2019; 16:563。9。帖子和al。n Engel J Med2018; 378:158-1 10。 bj和al。 J Clin Oncol 2021; 39:4073-4 11。 肿瘤学临床NCCN实践。 管理与免疫疗法有关的毒性的管理。 版本1.2024。 /www.norg.pdf.pdf。2018; 378:158-110。bj和al。J Clin Oncol2021; 39:4073-411。肿瘤学临床NCCN实践。管理与免疫疗法有关的毒性的管理。版本1.2024。 /www.norg.pdf.pdf。
1 3p-Medicine实验室,Gda´nsk医科大学,M。Sklodowskiej-Curie 3A,80-210 GDA´nsk,波兰; wiktoria.stankowska@gumed.edu.pl(W.S.); katarzyna.duzowska@gumed.edu.pl(K.D.); marcin.jakalski@gumed.edu.pl(M.J.); magdalena.wojcik@gumed.edu.pl(m.w.-z。); kinga.drezek-chyla@gumed.edu.pl(k.d.-c.); arkadiusz.piotrowski@gumed.edu.pl(A.P.)2乌普萨拉大学的免疫,遗传学与病理学和科学系,BMC,Husargatan 3,751 08 Uppsala,瑞典; daniil.sarkisyan@igp.uu.se(D.S.); bozena.bruhn-olszewska@igp.uu.se(b.b.-o.); hanna.davies@igp.uu.se(H.D.)3 GDA´nsk医科大学,M。Sklodowskiej-Curie 3A,80-210 GDA´NSK,波兰; michal.bienkowski@gumed.edu.pl(m.b。 ); rafal.peksa@gumed.edu.pl(R.P. ); wojciech.biernat@gumed.edu.pl(W.B.) 4肿瘤病理学系,玛丽亚·斯克洛德斯卡(MariaSkłodowska)国家肿瘤学研究所,加恩卡斯卡(Garncarska)11,31-115 krak rand; agnieszka.harazin@krakow.nio.gov.pl(A.H.-L。); marcin.przewoznik@krakow.nio.gov.pl(M.P. ); Michael.hultstrom@mcb.uu.se(M.H. ); robert.frithiof@uu.se(r.f.) ); Jan.dumanski@igp.uu.se(J.P.D.) †这些作者为这项工作做出了同样的贡献。 ‡这些作者对这项工作也同样贡献。3 GDA´nsk医科大学,M。Sklodowskiej-Curie 3A,80-210 GDA´NSK,波兰; michal.bienkowski@gumed.edu.pl(m.b。); rafal.peksa@gumed.edu.pl(R.P.); wojciech.biernat@gumed.edu.pl(W.B.)4肿瘤病理学系,玛丽亚·斯克洛德斯卡(MariaSkłodowska)国家肿瘤学研究所,加恩卡斯卡(Garncarska)11,31-115 krak rand; agnieszka.harazin@krakow.nio.gov.pl(A.H.-L。); marcin.przewoznik@krakow.nio.gov.pl(M.P.); Michael.hultstrom@mcb.uu.se(M.H.); robert.frithiof@uu.se(r.f.)); Jan.dumanski@igp.uu.se(J.P.D.)†这些作者为这项工作做出了同样的贡献。‡这些作者对这项工作也同样贡献。); agnieszka.adamczyk@onkologia.krakow.pl(a.a.); janusz.rys@krakow.nio.gov.pl(J.R.)5泌尿外科和肿瘤学诊所,波兰Piechowskiego的Ko´scierzyna专科医院karsas@o2.pl 6 piechowskiego的Ko´scierzyna专科医院一般和肿瘤外科诊所,波兰,83-400 Ko´scierzyna; wojmakar@wp.pl 7 Gda´nsk医科大学泌尿外科系和诊所M. Sklodowskiej-curie 3A,80-210 GDA´nsk,波兰; marcin.matuszewski@gumed.edu.edu.pl 8人畜共科科学中心,乌普萨拉大学医学科学系,阿卡德米斯卡·舒克胡斯(Akademiska Sjukhuset),瑞典751 85乌普萨拉(751 85); josef.jarhult@medsci.uu.se 9外科科学系,麻醉学和重症监护室,乌普萨拉大学,Akademiska Sjukhuset,751 85 Uppsala,瑞典; miklos.lipcsey@uu.se(M.L。10 Hedenstierna实验室,Uppsala大学外科科学系,Akademiska sjukhuset,751 85 Uppsala,瑞典11综合生理学,医学细胞生物学系,Uppsala大学,Uppsala大学,Uppsala大学,BMC,Husargatan 3,Husargatan 3,751 08 Uppsala,uppsala,uppsala,uppsala,sweden uppsala,sweden upean sweden of sweden utia, Skłodowska-Curie国家肿瘤学研究所,Garncarska 11,31-115 KrakÓW,波兰; jtjmed@interia.pl 13哈佛医学院遗传学系,美国马萨诸塞州波士顿大街77号,美国马萨诸塞州02115; giulio@broadinstitute.org 14生物学和药物植物学系GDA´nsk,Hallera,Hallera 107,80-416 GDA´nsk,波兰 *通信:
膀胱癌(BCA)是影响男性的最常见的恶性肿瘤之一。致癌转录因子在人类癌症进展中起重要调节剂。在我们的研究中,我们旨在构建人工循环的非编码RNA(aciRCRNA),这些功能单元由三个功能单元组成,这些功能单位模仿CRISPR-CAS系统并阐明其在膀胱癌中的治疗作用。此外,还进行了调节aciRCRNA和CRISPR-DCAS系统之间基因表达的效率的比较。我们连接了TFS适体的cDNA序列,并构建了一个circrna。为了证明平台的实用性,选择了β -catenin和nf -κB作为功能靶标,而T24和5637细胞系作为测试模型。实时定量PCR(QPCR),双荧光素酶测定和相关表型测定法被用于检测相关基因的表达和治疗效果。为了阐明ACIRCRNAS的功能,采用了能够检测β-蛋白酶和NF-κB表达的荧光素酶载体来评估aciRCRNA对β-Catenin和NF-κB的抑制作用。因此,确定了涉及acircrna-3的最佳组合。接下来,使用QPCR分析来评估aciRCRNA处理后靶标基因的相对表达水平。使用C-Myc和Cyclin D1的表达来确定β-蛋白酶的功能,而BCl-XL和TRAF1用于确定NF-κB的功能。ACIRCRNA抑制了BCA细胞中的β -catenin和NF -κB相关的信号传导。CD63-Hur融合蛋白用于将aciRCRNA加载到外泌体中。结果表明,aciRCRNA可以抑制目标转录因子的活性,并且抑制作用优于cripsr-dcas9-krab。此外,功能实验表明,膀胱细胞中阿西尔纳的转染导致增殖减少,凋亡增强和抑制迁移。总而言之,与CRISPR-DCAS9-KRAB系统相比,我们的合成基因装置表现出抗肿瘤调节能力,并显示出更高的肿瘤抑制效率。因此,我们的设备为癌症治疗提供了一种新的策略,可能是癌细胞的有用策略。
CC 趋化因子配体 5 (CCL5) 是 CC 基序趋化因子家族的成员,该家族还包括巨噬细胞炎症蛋白 1 α (MIP-1 α ) 和巨噬细胞炎症蛋白 1 β (MIP-1 β ) (10-12)。CCL5 具有高亲和力,主要与其受体 CC 趋化因子受体 5 型 (CCR5) 以及 CCR1、CCR3、CCR4、CD44 和 GPR75 (13-15) 结合。CCL5 还通过激活核因子 κ -轻链增强子 (NF- κ B) 参与 B 细胞增殖 (16)。该蛋白在 T 淋巴细胞、巨噬细胞、血小板、滑膜成纤维细胞、小管上皮细胞和肿瘤细胞中表达 (17)。根据最近的研究,CCL5通过增强肿瘤转移(18)和重塑细胞外基质来促进肿瘤进展,从而支持肿瘤干细胞扩增(19),导致肿瘤细胞产生耐药性(20),降低DNA损伤因子的细胞毒性,减轻细胞代谢重编程(21),增加血管生成,动员免疫细胞(22),诱导巨噬细胞极化以抑制免疫反应(23)。然而,CCL5在BC中的潜在机制仍不清楚。