图 2:图 1 所示的混合耦合神经元群体中,随着化学连接数 S 的变化和电连接数 R 的固定,出现了不同的动力学行为。每行分别显示网络环中两个相邻神经元(用红色和绿色箭头标记)和一个远处神经元(用蓝色箭头标记)在 V − w 相平面上的时空活动模式、膜电位快照、平均发放频率曲线和具有瞬时位置的周期轨道。化学连接数设置为 S = 5 (A)、S = 125 (B)、S = 250 (C) 和 S = 350 (D)。其他系统参数固定为 gc = 10 − 2 mS/cm 2、ge = 10 − 7 mS/cm 2 和 R = 100。
5 MB 能否控制电子比特? 17 5.1 比特必须满足什么条件?....................................................................................................................................................................18 5.1.1 与引力普朗克常数、基本生物节律、膜电位和代谢能量货币有关的奇怪巧合 ..................................................................................................................................18 5.1.2 关于基于量子引力的图片中时钟频率的解释?....................................................................................................................................................................18 5.1.2 关于基于量子引力的图片中时钟频率的解释?....................................................................................................................................................................................18 18 5.1.3 是否涉及波拉克效应或阴影全息术?.................................................................................................................... 19 5.1.4 是否涉及与小质量相关的量子引力通量管?.................................................................................................................................................... 20 5.2 将比特表示为电压是否允许实现电子阴影全息术?.................................................................................................................................................... 21 5.2 将比特表示为电压是否允许实现电子阴影全息术?.................................................................................................................................................... 22 . ...
He XD, Goyal RK。CaMKII 抑制使膜超极化并通过关闭肠道平滑肌中的 Cl 电导来阻断氮能 IJP。Am J Physiol Gastrointest Liver Physiol 303:G240–G246,2012 年。首次发表于 2012 年 4 月 26 日;doi:10.1152/ajpgi.00102.2012。— 氮能“慢”抑制连接电位 (sIJP) 的离子基础尚未完全了解。本研究的目的是确定钙调蛋白依赖性蛋白激酶 II (CaMKII) 依赖性离子电导在肠道平滑肌神经肌肉接头处氮能神经传递中的性质和作用。研究在豚鼠回肠中进行。使用改良的 Tomita 浴技术在同一细胞中诱导被动超极化电紧张电位 (ETP) 和因 sIJP 或药物治疗引起的膜电位变化。使用尖锐微电极在同一平滑肌细胞中记录膜电位和 ETP 的变化。在非肾上腺素能、非胆碱能条件下通过电场刺激以及嘌呤能 IJP 的化学阻滞引发氮能 IJP。超极化过程中 ETP 的改变反映了平滑肌中的主动电导变化。氮能 IJP 与膜电导降低有关。CAMKII 抑制剂 KN93(而非 KN92)、Cl 通道阻滞剂尼氟酸 (NFA) 和 K ATP 通道开放剂 cromakalim 使膜超极化。但是,KN93 和 NFA 与膜电导降低有关,而 cromakalim 与膜电导增加有关。在 NFA 诱导的最大超极化之后,未观察到与 KN93 或 sIJP 相关的超极化,表明 Cl 通道信号传导饱和阻断。这些研究表明,抑制 CaMKII 依赖性 Cl 传导可介导氮能 sIJP,从而导致 Cl 传导最大程度关闭。
2024 年 6 月 25 日 摘要 目标:使用简化的数学方法定量探索单个皮质神经元细胞体之间的跨膜电位差异如何产生脑电图 (EEG) 的皮肤表面电位,以及如何在院前环境中使用 EEG 检测缺血性中风。方法:从静电学、解剖学和生理学的基本原理出发,可以表征单个皮质神经元细胞体激活过程中产生的表观偶极子的强度。皮质神经元中的瞬时偶极子强度取决于其细胞体的大小和表面积、其电容以及细胞体上出现的跨膜电位差异。EEG 的总电位是许多单个偶极子强度、方向和与电极的距离的函数。皮质神经元活动和放电率降低模拟了急性缺血对一个或两个 EEG 电极下组织的影响。结果:如果在任何时刻,25 个细胞体在最靠近皮肤表面电极的 1 cm 3 体积的灰质中随机活动,则可以模拟临床上真实的 EEG 记录。仅在一个 EEG 电极下完全停止神经活动会导致总体 EEG 信号幅度和频率略有下降。但是,在两个 EEG 电极下,神经活动减少到正常值的 5% 到 50% 之间,会导致 EEG 幅度与正常值相比下降 30% 到 70%。结论:这种电活动变化可用于快速早期检测急性缺血性中风,可能加快溶栓或再灌注治疗,前提是两个电极都位于缺血区域,并将信号与头部另一侧的正常信号进行比较。关键词 : 动作电位、救护车、诊断、偶极子、早期干预、脑电图、缺氧、发病率、神经元、护理人员、即时诊断系统、院前诊断、快速、再灌注、血栓溶解、治疗时间、TPA、远程医疗
电子邮件:tereza.smejkalova@fgu.cas.cz简介由Grin Genes编码的N-甲基-D-天冬氨酸受体(NMDARS)是离子型谷氨酸受体,它们是中枢神经系统中几乎所有兴奋性突触的离子谷氨酸受体。经典的NMDAR具有特征性的生物物理特征,需要两种激动剂(谷氨酸和甘氨酸/ D-丝氨酸)的结合,在静息膜电位上,Mg 2+的强阻滞,高Ca 2+渗透性,相对较慢的激活和减速性动力学Kinetics [1]。这些特性使NMDAR可以作为突触前谷氨酸释放和突触后去极化的巧合探测器,从而去除Mg 2+块。所得的NMDAR介导的Ca 2+流入是一个关键信号,该信号调节了突触强度的活动依赖性变化[2],它是神经回路及其
质膜 H + -ATPases (PMA) 通过消耗 ATP 将 H + 从细胞质中泵出,从而产生膜电位和质子动力,以便营养物质跨膜转运进出植物细胞。PMA 通过调节根系生长、营养物质吸收和转运以及与丛枝菌根建立共生关系来参与营养物质的获取。在营养胁迫下,PMA 被激活以泵出更多的 H + 并促进有机阴离子排泄,从而提高根际营养物质的有效性。本文我们综述了 PMA 在植物有效获取和利用各种营养物质方面的生理功能和潜在分子机制的最新进展。我们还讨论了 PMA 在提高作物产量和品质方面的应用前景。
线粒体参与了多个细胞任务,例如ATP合成,代谢,代谢和离子转运,细胞凋亡的调节,线粒体DNA的发病,信号传导和遗传。线粒体的大多数正确功能基于大型电化学质子梯度,其成分(其内部线粒体膜电位)严格由通过线粒体内置的离子转运来控制。因此,线粒体功能严重取决于离子稳态,其干扰导致细胞功能异常。因此,发现通过膜影响离子通透性的线粒体离子通道定义了离子通道在不同细胞类型中的功能的新维度,这主要与线粒体离子通道在细胞生命和死亡中执行的重要任务有关。本综述总结了对动物线粒体离子通道的研究,特别关注其生物物理特性,分子身份和调节。此外,简要讨论了线粒体离子通道作为几种疾病的治疗靶标的潜力。
线粒体形态的研究更多地是在培养的细胞而不是天然细胞中进行的。The issue with this disparity has been highlighted by a study of vascular smooth muscle cells, of which those that were cultured cells appeared to offer more mitochondrial morphological diversity than in those that are native, which rather have singular spherical or rod-like mitochondria (with native cells in most tissues being found to have these similar, punctuate mitochondria), making it unlikely that observing ovoid shapes is due to氧化应激或成像难度。进一步的证据表明,遵守线粒体形状的传统观念包括未发现天然细胞的线粒体是电耦合的 - 它们的膜电位变化是独立的,而不是作为公共变化的一部分,这将在形成连续网络的细胞器中观察到。图1介绍了这项研究中线粒体和培养细胞中线粒体的图像。