这项研究分析了模糊逻辑控制器(FLC)类型-2用于自动车辆方向盘控制的应用,使用误差形式的输入值和从主控制器产生的输出与从脉冲机构计算获得的转向角度值之间的差异的输入值。然后通过ROS(机器人操作系统)处理此数据。本研究将FLC -2类型的性能与7个成员和5个成员以及在各种情况下的PID控制器进行了比较。结果表明,具有7个成员的FLC -2平均误差为4.97%,比5个误差为7.71%的成员的配置要好。在避免障碍测试中,FLC型-2显示出卓越的准确性,人类回避的平均误差为1.54%,一辆停车车的4.28%,左侧两辆停车车的平均误差为1.2%,左侧两辆停车车为2.13%,左侧为1.2%。与PID控制器进行了比较,PID控制器记录了分别为2.19%,3.49%,1.12%和3.49%的错误。从电气工程部门到工程学院的完整路线测试,FLC型-2型的平均误差为8.87%,而PID的平均误差为12.35%,而PID的FLC型误差为4.52%,FLC型-2型和7.57%。flc型-2具有7个成员的被证明在保持动态驾驶条件下的准确性和性能更有效,尽管PID对较小的误差值的响应更平滑。 这一发现显示了FLC -2型在提高转向准确性和整体自动驾驶汽车性能方面的潜力。被证明在保持动态驾驶条件下的准确性和性能更有效,尽管PID对较小的误差值的响应更平滑。这一发现显示了FLC -2型在提高转向准确性和整体自动驾驶汽车性能方面的潜力。关键字:自动驾驶汽车,FLC型-2,PID控制器,转向角,5个成员,7个成员
自主驾驶或遥控驾驶船舶的引航:操作概念(ConOps)需要考虑从远程操作中心(ROC)操作的引航员,以及如何满足港口当局的安全、法律和环境保护要求;远程引航的可接受性和信任度;关键的安全问题是建立和维护 SA 以及处理紧急情况,例如失去连接或放弃 ROC,导致推力或转向功能丧失;还需要考虑船舶本身、燃料和货物的风险。当要求引航员控制 MASS 时,例如过渡到远程操作以进入港口,需要考虑责任或义务变化方面的潜在法律影响。
环境,建立内部世界模型表示,做出决策并采取措施[9,50]。,尽管数十年来在学术界和工业上做出了巨大的努力,但他们的部署仍限于某些杂物或场景,并且不能在世界上无缝地应用。一个关键原因是在结构化自主驾驶系统中学习模型的概括能力有限。通常,感知模型会面临概括到不同环境的挑战,随着地理位置,传感器配置,天气条件,开放式对象等的变化。;预测和计划模型无法推广到具有罕见的sce narios和不同驾驶意图的非确定性期货[2,16,54]。是由人类学习如何感知和刺激世界的动机[27,28,49],我们主张采用驾驶视频作为通用界面,将其推广到具有动态期货的各种环境。基于此,首选驱动视频预测模型以完全捕获有关驾驶场景的世界知识(图1)。通过预测未来,视频预测因子本质上了解了自主驾驶的两个重要方面:世界如何运作以及如何在野外安全地操纵。最近,社区已开始采用视频作为代表各种机器人任务的观察行为和行动的接口[11]。对于诸如经典视频预测和机器人技术等领域,视频背景大多是静态的,机器人的运动很慢,并且视频的分解很低。相比之下,对于驾驶场景 - iOS,它与室外环境高度斗争,代理人涵盖了更大的动作,以及涵盖众多视图的感觉分辨率。这些区别导致了自主驾驶应用的重大挑战。幸运的是,在驾驶领域中开发视频预测模型[4、15、19、23、23、25、33、38、45、47]。尽管在预测质量方面取得了令人鼓舞的进展,但这些尝试并未像经典的机器人任务(例如,操作)那样实现概括能力,仅限于有限的场景,例如流量密度低[4]的高速公路[4]和小型数据集[15,23,33,33,33,45,45,47],或者在环境方面进行不同的条件,以使38个条件(33,45,47)的差异(33,45,47),以使3个条件(33,45,47)的差异(33,45,47),以使3个条件(33,45,47)的差异[3](33,45,47),以下情况下的情况[3](33,33,45,47),这是3次差异。如何揭示视频预测模型的驾驶潜力仍然很少探索。以上面的讨论为动机,我们旨在构建一个自动驾驶的视频预测模型,能够概括为新的条件和环境。为此,我们必须回答以下问题:(1)可以以可行且可扩展的方式获得哪些数据?(2)我们如何制定一个预测模型来捕获动态场景的复杂演化?(3)我们如何将(基础)模型应用于下游任务?
扩散模型在建模复合物和多模态轨迹分布方面表现出色,以进行决策和控制。最近提出了奖励级别指导的denoising,以生成轨迹,从而最大程度地提高了可差异的奖励函数,又是扩散模型捕获的数据分布下的可能性。奖励级别指导的denoisising需要适合清洁和噪声样本的可区分奖励功能,从而限制了其作为一般轨迹优化器的应用。在本文中,我们提出了扩散-ES,一种将无梯度优化与轨迹deNoising结合起来的方法,以优化黑框非差异性目标,同时留在数据管理中。扩散-ES样品在进化过程中的轨迹 - 从扩散模型中搜索,并使用黑框奖励函数得分。它使用截断的扩散过程突变高得分轨迹,该过程应用了少量的no弱和降解步骤,从而可以更有效地探索解决方案空间。我们表明,扩散-ES在Nuplan上实现了最先进的表现,Nuplan是一个已建立的闭环计划基准,用于自动驾驶。扩散-ES的表现优于现有的基于抽样的计划者,反应性确定性或基于扩散的策略以及奖励梯度指导。此外,我们表明,与先前的指导方法不同,我们的方法可以优化由少数弹药LLM提示产生的非差异性语言形状奖励功能。这使我们能够解决最困难的NUPLAN场景,这些方案超出了现有的传统优化方法和驾驶策略的能力。在以遵循指示的人类老师的指导下,我们的方法可以产生新颖的,高度复杂的行为,例如训练数据中不存在的积极的车道编织。1
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
摘要关于实验方法的辩论,其作用,限制以及其可能的应用程序最近在自主机器人技术中引起了人们的关注。,如果从一方面,诸如可重复性和重复性的经典实验原理,它是发展该研究领域良好实验实践的灵感,另一方面,一些最新的分析证明了严格的实验方法尚未完全是该社区研究习惯的全部。在本文中,为了给出一部分自主机器人技术中当前的体验实践的理由,这些实践在传统的受控实验概念下无法令人满意地容纳,我们将不再进行探索实验。在这种情况下进行的探索性实验应作为在没有适当理论或理论背景的情况下进行的一种调查形式,在这种情况下,从一开始就无法完全管理对实验因素的控制。我们表明,这一概念源于(并得到)对大量论文样本中报道的实验活动的分析,这些论文已在两个最大,最重要的机器人研究会议上获得了奖励。
lizzie blythe lizzie.bly@ederalab.co.uk初级客户经理+44(0)20 805 850 18 Sam Salzman sam.salzman@ederalab.co.uk.co.uk International PR Executive +44(0)7848 698 867
1。基于气候变化改编的水安全2。水资源的污染和富营养化,主要是titicaca,Uru Uru和Poopólakes。3。还原本地渔业资源的库存。4。提高公众对照顾水质和自然资源的重要性的认识。
在建筑业中的绘画是一种危险活动,为工人带来了许多建筑风险,例如从高处掉下来,笨拙的位置肌肉骨骼疾病以及暴露于有毒物质,尤其是在狭窄的空间中。大多数建筑项目都包括绘画活动和绘画活动的重复性质,导致了几个绘画机器人的提议,目前很少有商业上可用。这些机器人在目前的状态下有一定的局限性,影响了机器人的最终生产力及其在建筑工作地点的实施。本文解决的问题是缺乏对自主绘画机器人(APR)必要要素的研究,以有效,安全地执行施工绘画活动。这表明需要评估可用绘画机器人的当前局限性,以生成可以作为提高APR效率的方法进一步研究的基础的信息。因此,这项研究的目的是确定有效的APR的特性,并将其与市售APR的特性进行比较。对Scopus数据库和Google Scholar库的相关文献进行了全面研究,介绍了定义APR性能的主要参数。该研究强调了评估APR性能以及可用机器人的当前局限性的主要特性。这项研究的结果有望为对提高APR生产率提高的研究人员提供进一步的研究领域。关键词:绘画机器人,自动移动机器人,建筑自动化,建筑安全
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。