有机蛋白质因其独特的光学性质、卓越的机械特性和生物相容性而备受青睐。在有机蛋白质薄膜上制造多功能结构对于实际应用至关重要;然而,特定结构的可控制造仍然具有挑战性。在此,我们提出了一种通过调节有机材料的凸起和烧蚀在丝膜表面创建特定结构的策略。基于受控的超快激光诱导晶体形态转变和丝蛋白的等离子体烧蚀,产生了直径连续变化的独特表面形貌,如凸起和凹坑。由于不同周期的凸起/凹坑结构具有各向异性的光学特性,所制造的有机薄膜可用于大规模无墨彩色打印。通过同时设计凸起/凹坑结构,我们设计并展示了基于有机薄膜的光学功能装置,该装置可实现全息成像和光学聚焦。这项研究为多功能微/纳米结构的制造提供了一种有前途的策略,可以拓宽有机材料的潜在应用。
bi 1 -x ba x feo 3(bbfo,x = 0,0.03,0.1)薄膜是通过脉冲激光沉积在srruo 3-固定srtio 3(001)底物上外上脚部生长的。随着BA含量的增加,BBFO薄膜显示出显着降低的泄漏电流,但抑制了铁电偏振。X射线衍射互惠空间映射和拉曼光谱表明在BBFO薄膜中,从菱形的类似隆隆巴德中的到四方样相的结构进化。光吸收和光电子光谱测量表明,BBFO薄膜中能量带结构的调节。BBFO薄膜带有A位点BA受体掺杂,表现出光切的蓝移膜和工作函数的增加。 已调制了BBFO薄膜的传导和价带的能量位置,而费米水平向下转移到了禁带的中心,但是受体掺杂的BFO薄膜仍显示N型传导。 受体掺杂存在额外的氧气空位应该为传导行为做出贡献。 这项研究提供了一种操纵功能特性的方法,并洞悉BFO薄膜中BA掺杂物理学的洞察力。带有A位点BA受体掺杂,表现出光切的蓝移膜和工作函数的增加。已调制了BBFO薄膜的传导和价带的能量位置,而费米水平向下转移到了禁带的中心,但是受体掺杂的BFO薄膜仍显示N型传导。受体掺杂存在额外的氧气空位应该为传导行为做出贡献。这项研究提供了一种操纵功能特性的方法,并洞悉BFO薄膜中BA掺杂物理学的洞察力。
金属氧化物气体传感器是流行的化学主义传感器。它们用于许多任务,包括Envi Ronmental和安全监控。一些气体感应材料具有光诱导的特性,可通过在光照射时修饰传感器的选择性和灵敏度来增强气体检测。在这里,我们介绍了高度纳米孔Cu 2 o薄膜的气体传感特性,朝向电取(第2号)和亲核(C 2 H 5 OH,NH 3)在环境温度下的气体分子,并通过可见的光照明不同颜色的光照明(红色:632 Nm,Green:530 Nm,blue,blue:468 nm)。Cu 2 O膜是通过反应性高级气体沉积(AGD)技术制造的。样品的表面和结构分析证实了混合氧化铜相的纳米多孔薄膜的沉积。Cu 2 O的气体传感性能在亲电和亲核气体暴露时表现出预期的P型半导体行为。我们的结果表明,可见光照明提供了增强的传感器响应。
使用基于密度函数理论的紧密结合方法,我们研究了羰基对孔物石墨烯薄膜的电物质特性的影响,其直径为1.2 nm,颈部宽度为0。7-2 nm。根据Mulliken的部分电荷分布图的分析,在孔边缘的原子上进行了降落。已经建立了从羰基到孔的石墨烯的电荷转移现象。在研究中的特定膜的特定电导率变化的规律性,在“ Zigzag”方向和扶手椅上的颈部宽度增加了“六边形石墨烯格子的方向”。表明,电导率在“ Zigzag”方向突然变化,并显示了扶手椅方向的接近线性增加。在选择量子电子传输方向时,发现了孔石墨烯膜中电导率各向异性的存在。
作为铁电材料,坦坦酸锂和硝酸锂具有相似的材料特征,例如高骨效应和非纤维光学系数。与尼贝特锂相比,坦坦酸锂提供了更高的光学损害阈值,更宽的透明窗口和较低的双折射,这使其成为高性能电光光子积分设备的有前途的候选者。在这项研究中,我们在声学级锂 - tantalate-in-umbulator晶圆上设计并成功地制造了微环谐振器,证明了它们的可调性和动态调制功能。实验结果表明,已实现的薄膜基于诱导的微锂基微环谐振器的内在Q因子为8.4×10 5,对应于0.47 dB/cm的波导传播损失,调谐效率为1.94 pm/v。更重要的是,与基于薄膜锂锂锂相比,在直接驱动器下,在1550 nm波长围绕1550 nm波长附近的光疗法效应和漂移现象较弱,在当前制造的薄膜lithium lithm lithm lithm lithm lithrate微环中,具有硅质氧化物氧化氧化物的微环,并在硅氧化物中过度呈硅质过度旋转,并置于可音机上的电极。
b'abstract:与乙烯基连接的二维聚合物(V-2DPS)及其层堆叠的共价有机框架(V-2D COF)具有高平面内\ XCF \ XCF \ x80-Conjugation和Robobs框架的能量候选候选者。但是,当前的合成方法仅限于产生缺乏加工性的V-2D COF粉末,阻碍了它们进入设备,尤其是在依赖薄膜的膜技术中。在此,我们报告了通过knoevenagel多凝结的乙烯基链接阳离子2DPS膜(V-C2DP-1和V-C2DP-2)的新型水上表面合成,可作为高度可逆且基于耐用锌的Dual-iro-ion patchies(Zdibs)的阴离子选择性电极(作为阴离子)。模型反应和理论建模揭示了水面上knoevenagel反应的反应性和可逆性的增强。在此基础上,我们证明了对V-C2DPS膜的水表面2D多浓度,该膜显示出较大的侧向尺寸,可调厚度和高化学稳定性。代表性地,V-C2DP-1作为完全结晶和面向面的膜,具有A = B 43.3 \ XC3 \ X85的平面晶格参数。从定义明确的阳离子位点,定向的1D通道和稳定的框架中获利,V-C2DP-1膜具有优质的Bis(Trifluoromethanesulfonyl)Imide阴离子(TFSI)inImide(TFSI) - 转移率(T_ = 0.85),用于高空ZDIBS,从而在高空zdibs中进行transpertion andercation transportive and-Interc Zdib and Fratsion trande trander-dranscation-intrance zdib and。促进其特定能力(从〜83到124 mahg 1)和骑自行车寿命(> 1000个循环,能力保留95%)。
硅光子学已成为用于广泛应用的光子集成电路(PIC)的最广泛使用的平台之一。几乎所有这些都需要高速,低功率操作。调节剂仅基于硅,仅依赖于血浆分散效应来实现调节。血浆分散效应通过游离载体的移动引起材料的折射率变化,这意味着操作速度受这些载体的寿命限制,从而在数十吉哈特兹的命令下提供了最大可实现的带宽。在硅上新型材料的异质整合被认为是仅基于硅的调节剂的替代品。钛酸钡(BTO)就是一种可以集成到硅上的材料。在光子芯片上沉积为薄膜时,BTO表现出所有电极(EO)材料的最大塞子系数之一,同时是化学和热稳定的[1]。根据以下方程式,由于施加的电场e而导致的折射率n变化之间的线性关系给出了简化的描述:
1控制论,纳米技术和数据处理部,自动控制学院,电子和计算机科学,西里西亚技术大学,阿卡迪米卡16,44-100,波兰2。波兰科学院物理学院研究中心马格托普,阿勒贾·洛特尼科夫32/46,02-668波兰华沙4 4 4 4 4 4 4材料科学研究所,麦克斯·伯格曼生物材料中心和德雷斯登纳米分析中心,纳米分析中心威尼斯福斯卡里大学,通过Torino 155,I-30172委内兹Mestre,意大利MONIKA.KWOKA@POLSL.pl,Massimo.sgarzi@unive.it.it和Gianaurio。cuniberti@tu-dresden.de
I.引言已经开发了许多用于沉积高质量YBCO薄膜[1]的技术[1],例如真空蒸发,激光消融,化学蒸气沉积,磁控溅射[2,3]等对高温超导膜沉积的发展和理解在很大程度上有助于在低温电信设备中应用,例如低通滤波器,延迟线和微波通信的天线,并生产在数字电路和鱿鱼中有用的Josephson连接。所有技术和应用都将取决于大型薄膜廉价生产的成功。尤其是越野膜的生长,多层人士仍然是一个非常复杂的事情。由于存在几种固有的物质问题,例如短相干长度,各向异性,低临界电流密度和化学计量学,因此该过程变得复杂。同样,在薄膜中,元素从底物扩散到膜到膜以及相邻层是多层结构中的另一个问题。
元素金属薄膜在现代电子纳米器件中起着非常重要的作用,可用作传导通路、间隔层、自旋电流发生器/探测器以及许多其他重要功能。在这项工作中,通过利用固体金属有机源前体的化学性质,我们展示了元素 Ir 和 Ru 金属薄膜的分子束外延合成。当金属有机前体在基底表面分解时,通过对金属相的热力学和动力学选择,可以合成这些金属。采用原位和非原位结构和成分表征技术相结合的方式,研究了不同条件下的薄膜生长。在前体吸附、分解和晶体生长的背景下,讨论了基底温度、氧反应性和前体通量在调整薄膜成分和质量方面的重要作用。计算热力学将金属或氧化物形成的驱动力量化为合成条件和化学势变化的函数。这些结果表明,体热力学是低温下 Ir 金属形成的合理原因,而 Ru 金属的形成可能是由动力学介导的。