目的 本研究的主要目的是调查带减震器的装置支架的疲劳寿命。 设计与方法 进行了振动试验以证明有限元模型的准确性并确定了阻尼比。 使用三种不同的方法在频域中进行疲劳分析,并通过实验证明了分析的准确性。 原创性 本研究的主要新颖之处在于找出受减震器影响的部件的疲劳寿命。 发现 减震器对部件的疲劳寿命有很大影响。 结论 Lalanne 和 Dirlik 方法与加速试验结果的差异相同。 另一方面,窄带方法给出的结果最远。 原因是不规则因子 0.398 远离 1。 道德标准声明 本文作者声明,本研究中使用的材料和方法不需要道德委员会许可和/或法律特别许可。
本文展示了一种使用脉搏血氧仪、加速度计和振动传感器开发的癫痫发作检测装置。开发过程中还使用了 9V 电池、LM2596 稳压器和两个 ESP32 微控制器。脉搏血氧仪是一种传感器,其目的是测量患者的活动水平:血氧饱和度和心率。加速度计检测患者身体的运动或活动,这可能表明可能发生癫痫发作。另一方面,振动传感器检测到癫痫发作期间表现出的急促身体运动,有助于提高癫痫发作检测模型的效率。ESP32 微控制器与所提议设备中的传感器连接,以实现数据收集和传输。添加了 LM2596 稳压器以确保 9V 电池的电源始终开启。每当发生癫痫发作时,Blynk 应用程序都会向护理人员提供通知或警报。对于癫痫患者来说,该设备通过提供快速干预和及时监测,确保了他们的安全和生活质量。通过集成不同类型的传感器和微控制器,可以实现完整的癫痫发作检测,而 Blynk 应用程序可以确保与护理人员进行适当的沟通,从而有效、高效地管理护理。
阴极。通常,废水被放入阳极室,因为那里有很多微生物,而清水则留在阴极室中。因此,我们可以得到一定量的电压和电流读数。MFC 有一个缺点,就是它需要相当大的质量来产生能量。质量越低,我们得到的能量就越低。在实践中,对于 5 [L] 的废水,测得的最大电压为 1.01 [V](开路电压),恒定电流为 0.2 [mA]。因此,它可以用作电池,因为它产生的电压几乎与锂离子电池相同。然而,考虑到质量较低,MFC 可以用作储能装置。据报道,当多个单独的 MFC 连接成一个堆栈或多电极时,电压和电流会增加,具体取决于连接模式(串联或并联)[6]。MFC 的性能可以通过改变各种因素来改变,例如温度、废水质量、阳极和阴极材料等。
ELI-Beamlines 的 P3 装置被设想为一个实验平台,用于多个高重复率激光束,时间范围从飞秒到皮秒再到纳秒。即将推出的 L4n 激光光束线将以 1 次/分钟的最大重复率提供高达 1.9 kJ 的纳秒脉冲。该光束线将为高压、高能量密度物理、热致密物质和激光-等离子体相互作用实验提供独特的可能性。由于重复率高,将有可能在数据统计方面获得显著改进,特别是对于状态方程数据集。纳秒光束将与短亚皮秒脉冲耦合,通过照射背光目标或驱动回旋加速器装置产生高能电子和硬 X 射线来提供高分辨率诊断工具。
我们要感谢各领域专家在我们进行的咨询中提出的意见、意见和宝贵建议,这是 TERI 正在进行的能源转型工作的一部分,特别是关于聚光太阳能发电厂 (CSP) 的工作。我们特别感谢并赞赏来自 MNRE、NTPC、监管援助项目 (RAP)、India One Solar、Godawari Green Energy Private Limited、IIT Delhi & Kanpur 的专家提供的有益见解,他们参加了 2023 年 5 月 30 日举行的圆桌讨论。所有相关人员的意见,尤其是 Shakti 可持续能源基金会顾问兼 SECI 前董事总经理 Ashvini Kumar 博士、NTPC 董事长兼董事总经理 Gurdeep Singh 先生、MNRE 科学家-D Anil Kumar 博士、Godawari Green Energy Ltd. 副总裁 Jitendra Solanki 先生和 TERI 的 Gajendera Singh Negi 先生,对报告和建议的制定发挥了重要作用。我们感谢 TERI 的编辑和设计团队的贡献。
安全虽然气体分离设施中有许多区域需要担心安全问题,但主要危险还是在冷箱中。一个有力的例子可以说明可能发生的危险,2019 年 7 月 19 日,中国河南省一家工厂发生爆炸(图 4),造成 15 人死亡,多人受伤,工厂损失惨重。关于爆炸原因的一致意见指出,液氧通过泄漏渗入周围的珍珠岩绝缘层和二次遏制系统。外壳的设计无法承受持续的局部直接低温,它在压力下破裂,释放出液氧,形成富氧环境,导致两次爆炸和火灾。
(DC-GDPAU)是一个直流辉光放电等离子体实验,由艾因夏姆斯大学(埃及)物理系设计、建立和运行。该实验的目的是通过将印刷电路板(PCB)暴露于等离子体来研究和改善它的某些特性。该装置由圆柱形放电室组成,其中固定有可移动的平行圆形铜电极(阴极和阳极)。它们之间的距离为12厘米。该等离子体实验在氩气的低压范围(0.15 - 0.70 Torr)下工作,最大直流电源为200 W。在两个电极之间每厘米处测量和计算了等离子体的帕申曲线和电等离子体参数(电流、伏特、功率、电阻)。此外,使用双朗缪尔探针获得了不同径向距离下的电子温度和离子密度。电子温度(KT e )保持稳定在6.58至10.44 eV范围内;而离子密度(ni )范围为0.91×10 10 cm −3 至1.79×10 10 cm −3 。采用数字光学显微镜(800倍)比较等离子体暴露前后对电路布局成形的影响。实验结果表明,等离子体暴露后电导率增加,铜箔表面的粘附力也有所改善。电导率的显著增加与样品表面的位置以及暴露时间直接相关。这表明所获得的结果对于开发用于不同微电子设备(如航天器上的设备)的PCB制造非常重要。
高速列车已成为世界各地交通运输系统不可或缺的一部分。随着速度的提高,列车周围区域会产生非常高的速度,称为滑流。过去几十年来,人们进行了实验研究来研究这些现象的影响。滑流速度是使用放置在轨道上行驶的真实列车和在移动模型装置和旋转轨道装置等装置上运行的模型列车附近的风速计测量的。但是,大多数这些研究的成本都相当高。本论文的目的是找到一种测量滑流的替代方法。分离涡模拟用于模拟 ETR500 高速列车 1:15 比例模型周围的流动,其配置不同,类似于在轨道和风洞中进行的测试。将模拟结果与在都灵-诺瓦拉高速线上进行的实验测试获得的数据进行了比较。还进行了风洞测试以验证 CFD 数据。从结果得出结论,可以使用在列车前方设置滑动地板的风洞装置来确定列车产生的滑流速度是否在 TSI 标准规定的限值内。
2.1 加拿大和美国的经济在很大程度上依赖于进出口,而进出口大部分是通过船舶运输的。因此,船舶的性能和安全对其整体经济至关重要。这些船舶承受各种结构载荷,包括波浪作用引起的疲劳载荷,还可能因与冰和其他物体碰撞而承受冲击载荷,此外还有船舶自重和所载人员和货物重量产生的服务载荷。此外,如果这些船舶在北大西洋和太平洋以及北冰洋航行,它们可能会经受寒冷天气。气候变化使北冰洋部分地区在更长的航运季节内可以航行。因此,如今,更多的商业货船在北极水域航行,夏季也有少量游艇航行。预计在不久的将来,将有更多的商业船舶、游艇和沿海巡逻船穿越西北航道,航行时间会更长。因此,我们脑海中自然而然地浮现出一个问题:“航行于北冰洋西北航道的船舶将面临哪些挑战?”例如,北极船舶在西北航道面临的众多危险之一就是北极岛屿解体释放的重冰。北极船舶可能还需要面对许多其他未知和已知的威胁和挑战。因此,该项目旨在进行范围界定研究,旨在确定船舶在北冰洋航行时需要面对的结构行为方面的各种挑战和问题。
2.2 在船舶结构典型的疲劳载荷循环中,裂纹尖端的应力从拉伸变为压缩。在压缩应力期间以及在载荷循环的部分拉伸部分中,应力强度小于打开裂纹尖端所需的值 K OP ,由于裂纹闭合的影响,不会发生裂纹扩展。在疲劳试验(例如 SSC-448 的试验)中考虑裂纹闭合,其方法为通过测量载荷循环期间的裂纹打开位移并观察载荷与裂纹打开位移曲线中的非线性来确定 K OP 。通过这样确定的 K OP 估计值,可以确定应力强度因子的有效范围� K 有效 。SSC-448 等来源中提供的 da/d/N 与 DK 的关系图实际上是� K 有效 的函数。