最先进的人工智能 (AI) 技术已经达到了令人印象深刻的复杂性。因此,研究人员正在发现越来越多的方法将它们用于实际应用。但是,这种系统的复杂性要求引入使这些系统对人类用户透明的方法。AI 社区正试图通过引入可解释 AI (XAI) 领域来克服这一问题,该领域旨在使 AI 算法不那么晦涩难懂。但是,近年来,人们越来越清楚地认识到 XAI 不仅仅是一个计算机科学问题:由于它与通信有关,因此 XAI 也是人机交互问题。此外,AI 走出实验室是为了在现实生活中使用。这意味着需要针对非专家用户量身定制的 XAI 解决方案。因此,我们提出了一个以用户为中心的 XAI 框架,该框架侧重于其社交互动方面,灵感来自认知和社会科学的理论和发现。该框架旨在为非专家用户提供交互式 XAI 解决方案的结构。
摘要 人工智能 (AI) 和机器学习 (ML) 正在彻底改变人类各个领域的活动,医学和传染病也未能幸免于其快速而指数级的增长。此外,可解释的 AI 和 ML 领域已变得尤为重要,并吸引了越来越多的关注。传染病已经开始受益于可解释的 AI/ML 模型。例如,它们已被用于或提议用于更好地理解旨在改善 2019 年冠状病毒病诊断和管理的复杂模型、抗菌素耐药性预测领域和量子疫苗算法中。尽管一些有关可解释性和可解释性二分法的问题仍需认真关注,但深入了解复杂的 AI/ML 模型如何得出预测或建议,对于正确应对本世纪传染病日益严峻的挑战变得越来越重要。
人工智能和机器学习 (AI/ML) 算法在医疗保健领域的发展日渐成熟,用于诊断和治疗各种医疗状况 ( 1 )。然而,尽管此类系统技术实力雄厚,但它们的采用却一直充满挑战,它们是否能真正改善医疗保健以及在多大程度上改善医疗保健仍有待观察。一个主要原因是,基于 AI/ML 的医疗设备的有效性在很大程度上取决于其用户的行为特征,例如,用户往往容易受到有据可查的偏见或算法厌恶的影响 ( 2 )。许多利益相关者越来越多地将预测算法所谓的黑箱性质视为用户持怀疑态度、缺乏信任和接受缓慢的核心原因 ( 3, 4 )。因此,立法者一直在朝着要求提供黑箱算法决策解释的方向发展 (5) 。事实上,学术界、政府和民间社会团体几乎一致支持可解释的 AI/ML。许多人被这种方法吸引,因为它既能利用不可解释的人工智能/机器学习(如深度学习或神经网络)的准确性优势,又能支持透明度、信任和采用。我们认为,这种共识至少在应用于医疗保健领域时,既夸大了要求黑盒算法可解释的好处,又低估了其弊端。
机器学习方法在生物识别和个人信息处理(例如法医、电子医疗、招聘和电子学习)领域的重要性日益增加。在这些领域,基于机器学习方法构建的系统的白盒(人类可读)解释可能变得至关重要。归纳逻辑编程 (ILP) 是符号 AI 的一个子领域,旨在自动学习有关数据处理的声明性理论。从解释转换中学习 (LFIT) 是一种 ILP 技术,可以学习与给定黑盒系统等同的命题逻辑理论(在特定条件下)。本研究通过检查 LFIT 在特定 AI 应用场景中的可行性,迈出了将准确的声明性解释纳入经典机器学习的通用方法的第一步:基于使用机器学习方法生成的自动工具进行公平招聘,用于对包含软生物特征信息(性别和种族)的简历进行排名。我们展示了 LFIT 对这个特定问题的表达能力,并提出了一个可应用于其他领域的方案。
eXp Luxury 是一个由 eXp 代理商组成的全球网络,他们可随时为世界各地的客户提供优质服务。该计划结合了定制营销能力和资产,提供奢侈品认证课程和培训、策划和活动,以及与经验丰富的 eXp Luxury 代理商委员会的独家接触。
鉴于人工智能开发人员在确保人工智能系统、其成果和此类系统用户的责任方面发挥着重要作用,我们需要他们采取负责任、合乎道德和负责任的方法。因此,我们建议这些参与者参与旨在产生负责任的人工智能设计和使用的政策制定过程。根据我们的实证研究结果,我们提出了几项建议,以弥补当前在追求负责任的人工智能时将道德原则、认证标准和解释方法作为问责机制所发现的缺陷。我们希望这些建议能够有助于讨论如何在实践中确保问责制,同时兼顾开发人员、研究人员和公众的观点。
飓风 飓风是一种非常强大的风暴。它是一种气旋风暴,这意味着飓风内部呈圆形。飓风这个名字指的是始于大西洋或东太平洋的风暴。飓风在世界其他海洋中有不同的名称。例如,它们在西北太平洋被称为台风。在世界其他大部分地区,它们被称为气旋。它们的风速大多超过每小时 75 英里。风以圆形模式移动。风暴移动的中心点称为风暴眼。这些风暴通常发生在温暖的热带海洋中。它们从蒸发的海水中获取能量。飓风在陆地上移动时会减弱,因为它们依靠温暖的海洋在风暴移动时继续提供能量。陆地的表面也比海洋粗糙得多。陆地的海拔和表面变化要大得多。当风遇到陆地表面并产生摩擦时,飓风会失去动力。飓风是一种强大的风暴,通常始于大西洋或太平洋。这些风暴依靠海洋获得力量和能量,登陆后速度会减慢。
摘要 生命科学领域的最新技术进步极大地提高了我们以前所未有的深度在分子水平上解决科学问题的能力。自推出以来,下一代测序 (NGS) 实现了高通量分析,随着时间的推移,变得越来越普及和负担得起,塑造了研究和临床应用的未来。空间分辨转录组学 (SRT),特别是原位测序 (ISS),提供单细胞转录组数据,同时保留周围组织微环境的组织病理学背景。本论文探讨了挂锁探针与原位测序 (ISS) 或下一代测序 (NGS) 结合的应用,以解决与特定疾病相关的问题。在论文 I 中,我们研究了结核分枝杆菌 (Mtb) 与结核病感染小鼠肺中免疫细胞之间的空间相互作用,绘制了细菌簇和单个细菌附近的免疫相关转录本。我们的研究结果表明,在 Mtb 抗性的 C57BL/6 小鼠中,靠近单个细菌的巨噬细胞活化。相比之下,在易感染结核分枝杆菌的 C3HeB/FeJ 小鼠的肺组织中占主导地位的组织化肉芽肿未富集免疫激活转录本。这种方法提供了对结核病免疫反应的见解,并强调了空间分辨转录组学在研究宿主-病原体相互作用方面的能力。在论文 II 中,我们研究了非小细胞肺癌 (NSCLC) 中的肿瘤微环境,重点研究了 T 细胞克隆性的影响。我们将 TCR 克隆性与基因突变、肿瘤免疫特征和对免疫疗法的反应联系起来。我们的数据显示,高 TCR 克隆性与高肿瘤突变负担、发炎的肿瘤表型以及对检查点抑制剂的反应改善有关,这表明其有可能成为 NSCLC 个性化免疫治疗的生物标志物。在论文 III 中,我们在空间上探索了新辅助治疗期间选定的 NSCLC 组织中的 TCR 模式和免疫细胞分布,这些组织具有匹配的未受影响的淋巴结,以及 HER2+ 乳腺癌病例。我们注意到,与匹配的淋巴结相比,癌症组织中的 TCR 多样性较低。我们的数据进一步揭示了扩增克隆型(主要是 CD8 T 细胞)的区域优势,这些克隆型位于靠近癌症区。总体而言,这些结果证明了 ISS 在提供诊断组织样本中肿瘤免疫微环境中克隆 T 细胞扩增之间相互作用的关键空间细节方面的实用性,特别是在治疗环境中。在论文 IV 中,我们开发了一种基于分子倒置探针 (MIP) 的经济高效的检测血液样本中微生物病原体和抗菌素耐药性标志物的检测方法,即使在资源匮乏的环境中也能提供高特异性和灵敏度。MIP 方法简化了病原体检测,无需进行大量的样品制备或生物信息学分析,使其成为资源匮乏地区监测传染病的便捷工具。总的来说,这项工作展示了挂锁探针和先进技术的应用,以加深我们对疾病的了解并改善诊断和个性化治疗。
首先,我们研究了生成超级马里奥关卡的不同可能性。TOAD-GAN [ 3 ] 仅使用一个示例即可进行训练。该方法还使用户能够通过更改代表生成器网络输入的噪声向量来控制生成过程的输出。由于设计师无法解释噪声向量,因此设计师仍然无法根据自己的需求设计内容。为了实现这一点,必须让设计师能够解释噪声向量,并将噪声向量的不同区域映射到噪声向量变化所产生的内容。生成超级马里奥关卡的另一种方法是使用带有图块集的进化算法 [ 4 ]。图块集强制输出的一致性,而 Kullback-Leiber 散度
