通讯作者:shahabbayatzadeh@gmail.com https://doi.org/10.22105/mrpe.2025.499771.1137 被许可人。绩效评估的现代研究。本文为开放获取文章,根据知识共享署名 (CC BY) 许可条款和条件分发(http://creativecommons.org/licenses/by/4.0)。
糖尿病足溃疡(DFUS)是糖尿病最常见且高度残疾的并发症之一,其特征是持续的脚步溃疡具有高感染率和截肢的风险,对患者生活质量和公共卫生系统构成了重大挑战(1)。根据数据预测,到2030年,全球糖尿病人口估计约为4.39亿(2)。在糖尿病患者中,大约30%的人会在其一生中出现足球溃疡(3),其中一部分患者因溃疡恶化而受到截肢的风险。研究表明,到2050年,三分之一的美国人将患有糖尿病,多达34%的糖尿病患者将在其一生中发展糖尿病足溃疡(DFU)(4)。DFU是成年糖尿病患者的严重并发症(5),一生中约有19%-34%的人足性溃疡,随着患者的年龄和医疗保健的复杂性,这种风险会增加(6)。DFU可以导致严重的结果,例如感染,截肢和死亡,在3 - 5年内复发率为65%(7),截肢率为20%,5年死亡率高达50%-70%(8)。尽管在多学科预防和早期筛查方面取得了进步,但在某些地区,截肢率却有所提高,尤其是影响年轻个人和少数群体,突出了DFU管理中的差异和不平等现象(9)。此外,糖尿病患者的免疫功能降低并降低了感染性(10),进一步增加了与DFU相关感染的风险(11)。在这些机制中,持续的炎症反应和组织受损(12)被认为是DFU的进展中的关键驱动因素。最近的研究表明,CXCR4基因在诸如细胞迁移,炎症调节和组织修复等过程中起重要作用(13),并且CXCR4的异常表达被认为是多种慢性条件下疾病进展的驱动力(14,15)。cxcr4在各种细胞类型(16)中表达,并通过其配体CXCL12调节细胞迁移,增殖和炎症反应(17)。研究表明,CXCR4在诸如DFU之类的慢性伤口中异常表达,可能导致
本文介绍了我们针对 2021 年人工智能城市挑战赛 (AICITY21) 的 Track2 的解决方案。Track2 是一个使用真实世界数据和合成数据的车辆重新识别 (ReID) 任务。在本次挑战中,我们主要关注四个点,即训练数据、无监督领域自适应 (UDA) 训练、后处理、模型集成。(1)裁剪训练数据和使用合成数据都可以帮助模型学习更多判别性特征。(2)由于测试集中有一个在训练集中未出现的新场景,因此 UDA 方法在挑战中表现良好。(3)后处理技术包括重新排名、图像到轨迹检索、摄像头间融合等,可显著提高最终性能。(4)我们集成了基于 CNN 的模型和基于 Transformer 的模型,它们提供了不同的表示多样性。通过上述技巧,我们的方法最终取得了 0.7445 的 mAP 分数,在比赛中获得第一名。代码可在 https://github.com/michuanhaohao/AICITY2021_Track2_DMT 获得。
有关此指南的内容关键数据保护概念生物识别识别我们如何证明我们遵守数据保护义务?我们如何合法处理生物特征数据?我们如何公平处理生物识别数据?准确性原理如何适用于生物识别数据?我们如何确保生物识别数据的处理是透明的?我们如何考虑对生物识别数据的权利请求?我们如何确保生物特征数据安全?
生物识别是指个人独特的身体和行为特征,例如指纹、面部特征、声音或打字模式。生物识别在用于安全和安保目的的人工智能应用中尤为重要,因为它们提供了一种可靠且方便的识别和验证个人的方法。人工智能技术具有快速处理和分析生物特征数据的强大能力。
mung bean是一种重要的经济作物,被认为是一种植物蛋白成分含量较高的作物,被视为蔬菜和谷物。在各种与产量相关的性状中,一百种种子重量(HSW)对于确定绿豆的产生至关重要。这项研究采用了200条线的重组植物线(RIL)人群,这些线群是通过全基因组重新取代进行基因分型的,以在四个环境中鉴定出HSW相关的定量性状基因座(QTL)。我们识别了HSW的5个QTL,每个QTL都解释了2.46 - 26.15%的表型差异。其中,QHSW1在所有四个环境中均在1号染色体上映射,解释了表型变化的16.65-26.15%。精细的映射和基于地图的克隆程序,以及重组的后代测试,有助于将QHSW1的候选间隔缩小到506 kb。QHSW1基因组间隔和与QHSW1紧密联系的标记的这种识别对于改善种子重量较高的绿豆品种的繁殖工作可能是有价值的。
自动文本识别是一个困难但重要的问题。它可以概括为:如何使计算机能够识别预定义字母表中的字母和数字,可能使用上下文信息。已经进行了各种尝试来解决这个问题,使用不同的特征和分类器选择。自动文本识别系统在准确性方面已经达到了人类的表现,并且在单一大小、单一字体、高质量、已知布局、已知背景、文本的情况下,速度超过了人类的表现。当上述一个或多个参数发生变化时,问题变得越来越困难。特别是,尽管近四十年来不断进行研究,但要达到人类在识别不同大小、不同风格、未知布局、未知背景的草书方面的表现,远远超出了当今算法的范围。在本报告中,我们详细分析了该问题,介绍了相关困难,并提出了一个解决自动文本识别问题的连贯框架。
科学监测是科学建议的基本基础。除其他外,监测旨在有助于理解人为使用的影响(例如fineries),股票的健康,个人和保护和保护措施的有效性(例如,mpas)。监测对底栖鱼类和底栖鱼类社区的监测通常是基于诸如底部拖网(Tostal Trawing)之类的侵入性方法,但是在某些情况下,侵入性方法可能较少。需要越来越多的海洋保护区和风力,在这种情况下,由于保守或技术和安全原因无法部署诸如拖网等传统方法,因此支持了越来越多的侵入性监测方法。为了支持新的监测概念的发展,我们进行了文献综述,以确定已经可用的方法的限制和机会。此外,我们提出了一个目的指南,可以帮助确定用于个人目的的适当方法。我们定义了使用四个不同标准分析的八种不同方法,并列出了它们的优势和缺点。我们将本指南进一步应用于波罗的海海洋保护区的监测,这表明除了传统的底部拖网,替代性和侵入性较低的方法外,还可以针对特定的研究目的。因此,我们鼓励科学家和经理考虑替代数据收集方法,以最大程度地减少科学抽样的环境影响。但是,我们的结果还表明,大多数方法仍然需要进一步的修改,尤其是在采样设计,方法的标准化以及与既定的调查方法的可比性方面。
●密苏里植物园是世界上最大的草药之一的所在地,是植物学最伟大的发展之一。●草药是世界上保存的植物标本的图书馆,提供了有关植物多样性,分布,地理和生态学的基本信息。●革命性物种识别(RSI)项目是一项变革性的计划,旨在将密苏里植物园广泛的植物标本室收藏数字化。该项目将利用最先进的人工智能(AI)技术来加速植物物种识别识别,这将为全球的恢复和保护工作提供依据。●AI技术将自动检测到独特的植物特征,该特征将用于创建植物特征的在线参考库。然后,科学家将能够将图像和其他数据从不明的工厂上传到一个新的项目网站,以快速自动化物种识别。●除了加速全球恢复和保护工作外,该项目还可以通过在植物分类学和制药室创建植物分类法和制造植物分类方面提供宝贵的培训计划来开发下一代植物专家。●这项具有里程碑意义的计划是由匿名$ 1440万美元的赠款(近年来植物学最大的赠款)在未来六年内将600万个植物标本在线上带来600万个植物标本的可能性,使全球科学家,保护主义者和政策制定者可以免费访问关键数据。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他