诊断学创新基金会 (FIND) 是一家致力于诊断研究的非营利组织,其目标是确保全世界都能平等获得可靠的诊断服务,推动诊断创新,使检测成为可持续、有弹性的卫生系统的组成部分。NTP 孟加拉国办事处是孟加拉国卫生和家庭福利部卫生服务总局下属的一个分支机构。NTP 旨在通过有效的伙伴关系、调动必要的资源以及在明确的终止结核病战略下确保优质的诊断和治疗服务,加强结核病控制工作。NTP 致力于让孟加拉国所有人不论年龄、性别、宗教、民族、社会地位或种族,都能平等地获得服务。本协议的一项关键要求是,根据全球准入要求,任何资助的开发项目都应让生活在资源有限环境中的人们能够获得并负担得起,并且根据本协议产生的所有结果、数据和可交付成果都应广泛公开。考虑到上述内容、本协议中包含的相互陈述、保证和承诺以及其他良好且有价值的对价,双方特此确认已收到且充分,本协议双方特此达成如下协议。
东京,2022 年 4 月 5 日 - 用于靶向阿尔法疗法 (TAT) 的核心材料有望成为癌症的新疗法 - 日本领先的放射性制药公司日本医疗物理株式会社 (NMP) 于 2022 年 4 月 5 日宣布,该公司已在其药物研究设施 (*3) 以 GBq (*2) 规模成功生产用于靶向阿尔法 (*1) 疗法 (TAT) 的核心材料锕-225 (Ac-225)。这一成功代表着世界上首次 (*4) 使用回旋加速器以 GBq 规模制造出用于研究药物的材料质量水平的 Ac-225。TAT 是一种治疗诊断学 (*5) 形式,是一种攻击体内癌细胞的新治疗概念,应用一种治疗剂,其中可以杀死癌细胞的发射阿尔法粒子的放射性核素与癌细胞蛋白质中选择性积累的抗体结合。特别是在2016年报告了其对全身转移性前列腺癌患者的高效治疗效果(*6)之后,全球范围内针对发射阿尔法粒子的Ac-225的TAT的临床研究已日益增多。
1 rWth亚兴大学神经解剖学研究所,温德林维格2,52074,德国亚兴2西德·西德儿童与青少年健康中心(WZKJ),科隆大学科隆大学医院62,50931德国科隆3儿童和青少年精神病学系,心理健康和心理治疗,大学医院,大学医院,雷恩霍夫·维格,纳uenhofer weg 21,52074德国亚历山4日4,儿童和青少年,精神病学和精神病学和心理疗法,ESSEN eSSEN ESSEN,ESSEN ESSEN,VIRCHESS SAVEREN,VIRCHESS 174 174,44。普朗克进化生物学研究所,八月 - 泰恩曼 - 斯特尔。2,24306Plön,德国6基尔大学,基督教 - 阿尔布雷希特斯 - 普拉茨实验医学研究所4,24118德国基尔7号,德国7号基尔7儿科学系,rwth亚太大学医学院,Pauwelsstraße,Pauwelsstraße30,52074 Aachen,Achen,Aachen,ACHEN,ACHEN,ACHEN,ACHEN,ACHEN,ACHEN 8 Freiburgstrasse 15,3010,瑞士伯恩9实验室医学研究所,临床化学与分子诊断学研究所,莱比锡大学,Paul-List-Straße大学,15/15,04103德国莱比锡,德国10研究所10. 44,39120德国Magdeburg 11医学信息学与统计研究所,基尔大学,不伦瑞克斯特。 10,24105德国基尔 *信件:jochen.seitz@lvr.de†这些作者对这项工作也同样贡献。2,24306Plön,德国6基尔大学,基督教 - 阿尔布雷希特斯 - 普拉茨实验医学研究所4,24118德国基尔7号,德国7号基尔7儿科学系,rwth亚太大学医学院,Pauwelsstraße,Pauwelsstraße30,52074 Aachen,Achen,Aachen,ACHEN,ACHEN,ACHEN,ACHEN,ACHEN,ACHEN 8 Freiburgstrasse 15,3010,瑞士伯恩9实验室医学研究所,临床化学与分子诊断学研究所,莱比锡大学,Paul-List-Straße大学,15/15,04103德国莱比锡,德国10研究所10.44,39120德国Magdeburg 11医学信息学与统计研究所,基尔大学,不伦瑞克斯特。 10,24105德国基尔 *信件:jochen.seitz@lvr.de†这些作者对这项工作也同样贡献。44,39120德国Magdeburg 11医学信息学与统计研究所,基尔大学,不伦瑞克斯特。10,24105德国基尔 *信件:jochen.seitz@lvr.de†这些作者对这项工作也同样贡献。
摘要:微电子技术正在兴起,有时命运多舛,是诊断学中的关键推动技术。本文回顾了一些最新成果和技术挑战,这些挑战在 CMOS 模拟专用集成电路 (ASIC) 的设计及其与周围系统的集成方面仍需解决,以巩固这一技术范式。从两个看似遥远但互补的角度讨论了悬而未决的问题:微分析设备,结合了微流体和整体生物传感,以及用于同时进行多模态成像的伽马相机,即闪烁扫描和磁共振成像 (MRI)。集成电路在这两个应用领域都发挥着核心作用。在便携式分析平台中,ASIC 提供小型化并解决噪声/功耗权衡问题。CMOS 芯片与微流体的集成带来了多个悬而未决的技术问题。在多模态成像中,既然已经证明了伽马探测器的采集链(数千个硅光电倍增管通道)与特斯拉级磁场的兼容性,那么就可以设想由微电子技术推动的其他发展方向,特别是对于单光子发射断层扫描(SPECT):例如,更快、更简单的操作,以允许可移动的应用程序(床边)和硬件预处理,从而减少输出信号的数量和图像重建时间。
图 1 显示了现代放射治疗的发展。从历史上看,放射治疗是在二维空间中进行计划和实施的,治疗范围基于骨骼解剖结构。由于组织密度差异和计划能力限制,治疗范围很大,并且所施加的放射治疗剂量不均匀。CT 成像的使用使肿瘤和健康组织的描绘更加精确。此外,适形放射治疗和三维计划技术的发展不仅有助于测量施加到肿瘤和有损伤风险的器官的放射治疗剂量和体积,而且还有助于了解放射治疗剂量和毒性之间的相互作用。5 强度调制放射治疗和图像引导放射治疗的使用也彻底改变了许多恶性肿瘤的治疗,显著降低了治疗相关毒性并改善了长期结果。6–8 随着技术的进步,复杂目标可以以毫米级的精度和急剧的剂量衰减进行高剂量治疗,以保护健康组织。其他进展包括使用带有机载 MRI 或 PET 扫描仪的直线加速器,在治疗期间可以比不使用时更好地定义组织,并允许在治疗期间根据肿瘤大小或位置的变化进行自适应治疗(图 2)。扩大了放射治疗的肠外应用,例如前列腺癌中的镭-223、9 治疗诊断学、伽玛刀放射外科手术,以及
我们最近在《肠道》中报道说,微生物对早期妊娠糖尿病(GDM)的诊断学涉及,从第一学期开始(T1),其他小组持续表明,在第二三中(T2)和第三三年(T2)(T3)(T3)(T3)中,女性患有Microtobiota dismbibiobios。2在继续进行T1研究时,我们现在有数据表明,饮食干预措施(GDM的首选和主要治疗方法)部分通过改变肠道菌群而有效。To elucidate the causal role of the microbiome on GDM, we performed faecal micro- biota transplant (FMT) of samples from age/body mass index-matched women with and without GDM (n=5 each, table 1 and online supplemental table 1) in T2 and in T3, following dietary inter- vention, to germ-free mice to elucidate microbiome-mediated effects of diet on GDM(图1A)。对供体样品的回顾性分析表明,无论三个月如何,各组之间的不同微生物组成(图1B,C);没有发现差异丰富的分类单元。为了检查FMT对GDM表型的影响,进行了腹膜内葡萄糖耐受性测试。在每个三体中的组之间观察到葡萄糖代谢的变化(图1d,e)。在饮食干预之前,在T2女性的FMT的小鼠中,我们发现
本综述深入探讨了人工智能 (AI) 在核医学中的作用,重点关注机器学习 (ML) 及其当前应用所代表的观点。在肿瘤学中,人工智能最重要的影响是卷积神经网络在四个主要领域的应用,包括图像重建、图像细化、自动病变检测,以及最终人工智能以先进的定量方式创建分析图像的新方法。它提供独特的功能信息,以提高诊断准确性和未来的全面疾病评估。随着人工智能与核医学数据和临床信息的融合,个性化治疗计划将不断发展。这将彻底改变治疗选择,因为它将基于患者的个性。由于对治疗结果的良好预测模型,医学中的放射组学可能会带来更好的诊断。人工智能将通过在人工智能的帮助下开发的放射性药物在治疗诊断学中发挥重要作用,从而提供优化的患者选择。实时决策支持将人工智能视为核医学程序中永远存在的合作伙伴。道德考虑,包括患者隐私和算法透明度,是负责任地使用人工智能的关键考虑因素。建立全球合作以制定标准和监管框架是让人工智能负责任的必要条件。此外,本综述的范围是探索人工智能在核医学中的多方面影响,一窥技术和医学科学交叉领域的现状和前景。
人类基因组学 – PCB4666/ PCB6667 2024 年春季 3 学分 Jennifer Drew 博士 教学副教授 微生物学和细胞科学系 jdrew@ufl.edu 上课时间:美国东部时间星期四上午 9 点至 10 点,通过 Zoom 或个人预约。 Korrie James 女士,硕士 研究生 助教 微生物学和细胞科学系 korriejames@ufl.edu 上课时间:美国东部时间星期二下午 5-6 点,通过 Zoom 或个人预约。 课程描述 越来越多的研究人员和医疗保健提供者正在挖掘基因组,以揭示疾病易感性和治疗的基础。基于基因组的策略用于检测、治疗和预防许多疾病。本课程将讨论基因组学领域、如何获取和分析基因组序列数据,以及最重要的是,可以从个体基因组中了解到什么。学生将通过处理人类基因组数据开展基因组学研究,并对遗传变异与饮食之间的关联进行小规模分析。本课程将涉及表观遗传学、药物基因组学和分子诊断学的前沿研究。本课程还将包括转基因生物、干细胞、基因检测和基因组编辑等时下热门话题。本课程将巩固分子生物学和遗传学的基本概念。本课程将完全基于网络,所有讲座都将在线和异步授课。阅读作业、课程讲座材料和在线活动将每周发布。每周将对模块材料进行一次测验。课程目标
摘要:癌症是全球第一大死亡原因,其次是心脏病和中风,是迄今为止死亡率最高的疾病。我们对各种癌症在细胞水平上的运作方式有了很大的了解,这使我们实现了所谓的“精准医疗”,即每次诊断检查和治疗程序都是针对患者量身定制的。FAPI 是可用于评估和治疗多种癌症的新型示踪剂之一。本综述的目的是收集有关 FAPI 治疗诊断的所有已知文献。在四个网络图书馆(PUBMED、Cochrane、Scopus 和 Web of Sciences)上进行了 MEDLINE 搜索。收集了所有包括使用 FAPI 示踪剂进行诊断和治疗的可用文章,并通过 CASP(批判性评价技能计划)问卷进行系统评价。共有 8 条记录被认为适合 CASP 审查,时间范围从 2018 年到 2022 年 11 月。这些研究经过了 CASP 诊断检查表,以评估研究目标、诊断和参考测试、结果、患者样本描述以及未来应用。样本大小和肿瘤类型各不相同。只有一位作者使用 FAPI 示踪剂研究了一种类型的癌症。疾病进展是最常见的结果,没有发现相关的附带影响。尽管 FAPI 治疗诊断学仍处于起步阶段,缺乏坚实的基础将其引入临床实践,但迄今为止,它没有表现出任何阻碍患者给药的附带影响,并且具有良好的耐受性。
膀胱癌是全球第十大常见癌症,五年生存率约为 70%。目前,非肌层浸润性膀胱癌的一线治疗是经尿道膀胱肿瘤切除术,随后进行膀胱内牛分枝杆菌卡介苗 (BCG) 免疫治疗。然而,肿瘤复发率仍然很高,五年内复发率在 31% 至 78% 之间。为了避免根治性膀胱切除术,膀胱内联合疗法已被开发为克服 BCG 失败的挽救性治疗。得益于肿瘤分子分析,诊断学方面的最新进展以及免疫疗法的发展等治疗学方面的最新进展提供了 BCG 治疗以外的更多治疗选择。这也与配方的进步相辅相成,以在传统药物输送系统可能不适用的地方提供这些新疗法,而这又通过膀胱内途径输送药物的挑战来完成。本文旨在深入分析膀胱内联合治疗的当前发展,从相对简单的混合现有膀胱内治疗剂(免疫疗法和化疗)到包含先进基因疗法和靶向疗法的联合制剂,特别关注已进入临床试验阶段的疗法。此外,还包括最近利用设备辅助治疗和新型药物输送平台的尝试。本综述还强调了仍需克服的局限性,例如对新探索的药物载体的研究不足,并提出了未来克服 BCG 失败的潜在工作方向。