Haloferax Mediterranei是一种在高盐环境中蓬勃发展的极端卤素古老的考古,由于其在极端盐度条件下繁荣发展,因此在生物技术和生化研究中引起了人们的关注。转录因子在调节各种细胞过程中必不可少,已成为理解其适应性的焦点。这项研究深入研究了LRP转录因子的作用,探索了其通过β-半乳糖苷酶测定的体内GLNA,NASABC和LRP基因启动子的调节。值得注意的是,我们的发现提出LRP是氮代谢的开创性转录调节剂。这项研究表明其在激活或抑制同化途径酶(GLNA和NASA)中的潜在作用。LRP与这些启动子之间的相互作用使用电泳迁移率转移测定法和差异扫描荧光法分析,这突出了L-谷氨酰胺在稳定LRP -DNA复合物中必不可少的作用。我们的研究发现,在存在L-谷氨酰胺的情况下,卤素LRP形成八接结构。该研究揭示了使用X射线晶体学作为同型二聚体的三维结构,通过小角度X射线散射在溶液中证实了该状态。这些发现阐明了驱动HFX的复杂分子机制。地中海尼的氮代谢,提供有关其基因表达调节的宝贵见解,并丰富我们对极端生物学的理解。
由CSI新加坡的合作者Eliza Fong助理教授,N.1 N.1卫生研究院和NUS设计和生物医学工程系的生物医学工程系的合作者领导,该实验表明,NUS的设计与工程学院的生物医学工程系表明,肿瘤对治疗的耐药性表现出了SLC1A5升高的治疗水平。作为谷氨酰胺为癌细胞提供能量,使其生长和对治疗的抵抗力,阻止其摄入量可以增强癌症治疗的有效性。
抽象的大噬菌/自噬是一种多步降解过程,对于维持细胞稳态至关重要,并且在疾病期间常常失调。系统地量化通过该途径的通量对于获得基本见解并有效调节此过程至关重要。量化通量的建立方法使用稳态测量,该测量提供了有关扰动和细胞反应的有限信息。我们提出了一个理论和实验框架,可在非态状态条件下以速率的形式测量自噬步骤。我们使用这种方法来测量对雷帕霉素和沃特曼宁治疗的时间反应,这是两个常用的自噬调节剂。我们在短短10分钟内量化了自噬速率的变化,这可以在反馈开始之前建立自噬扰动的直接机制。我们确定了雷帕霉素对自噬速率初始和时间进展的con核心依赖性作用。我们还发现,沃尔特曼宁(Wortmannin)对自噬的抑制作用,雷帕霉素进一步加速了恢复时间。此外,我们应用了这种方法来研究血清和谷氨酰胺饥饿对自噬的影响。血清饥饿导致所有速率的快速和短暂增加。谷氨酰胺饥饿导致较长时间尺度上的速率降低。总而言之,这种新方法可以量化具有高灵敏度和时间分辨率的自噬通量,并促进对这一过程的全面理解。
抽象的大噬菌/自噬是一种多步降解过程,对于维持细胞稳态至关重要,并且在疾病期间常常失调。系统地量化通过该途径的通量对于获得基本见解并有效调节此过程至关重要。量化通量的建立方法使用稳态测量,该测量提供了有关扰动和细胞反应的有限信息。我们提出了一个理论和实验框架,可在非态状态条件下以速率的形式测量自噬步骤。我们使用这种方法来测量对雷帕霉素和沃特曼宁治疗的时间反应,这是两个常用的自噬调节剂。我们在短短10分钟内量化了自噬速率的变化,这可以在反馈开始之前建立自噬扰动的直接机制。我们确定了雷帕霉素对自噬速率初始和时间进展的con核心依赖性作用。我们还发现,沃尔特曼宁(Wortmannin)对自噬的抑制作用,雷帕霉素进一步加速了恢复时间。此外,我们应用了这种方法来研究血清和谷氨酰胺饥饿对自噬的影响。血清饥饿导致所有速率的快速和短暂增加。谷氨酰胺饥饿导致较长时间尺度上的速率降低。总而言之,这种新方法可以量化具有高灵敏度和时间分辨率的自噬通量,并促进对这一过程的全面理解。
所有这些疾病的特征都是在称为胞嘧啶-腺嘌呤-鸟嘌呤 (CAG) 三核苷酸重复的单元中发生特定的基因异常,导致产生具有扩展的多聚谷氨酰胺束的蛋白质。26 产生的蛋白质是有缺陷的,受影响的蛋白质在 polyQ 疾病中在功能和细胞内位置方面有所不同。此外,每种 polyQ 疾病都会影响不同的大脑区域和神经元细胞亚型。26 这些基因异常主要影响中枢神经系统,并与进行性退化、功能障碍和特定神经元群体的死亡有关。21,26,27,38,39
图1 Polyq疾病蛋白的αFOLD结构。 (A) Predicted AlphaFold protein model of full-length ATXN1 (Human; AF-P54253), (B) ATXN2 (Human; AF-Q99700), (C) ATXN3 (Human; AF-P54252), (D) ATXN7 (Human; AF-O15265), (E) CACNA1A (Human; AF-O00555), (F) TBP(人类; AF-P20226),(G)AR(人类; AF-P10275)和(H)ATN1(Human; AF-P54259)。 (i)预测氨基酸残基1至413的Alphafold蛋白模型HTT(HTTQ21(1-414)),其中包含21个聚谷氨酰胺。 预测的HTTQ21(1-414)AlphaFold模型叠加在灰色(蛋白质数据库ID 6x9O,2.60Å分辨率[99]中显示的Cryo-EM确定的HTT-HAP40蛋白结构[99],其中未在Cryo-Em结构中确定PolyQ区域。图1 Polyq疾病蛋白的αFOLD结构。(A) Predicted AlphaFold protein model of full-length ATXN1 (Human; AF-P54253), (B) ATXN2 (Human; AF-Q99700), (C) ATXN3 (Human; AF-P54252), (D) ATXN7 (Human; AF-O15265), (E) CACNA1A (Human; AF-O00555), (F) TBP(人类; AF-P20226),(G)AR(人类; AF-P10275)和(H)ATN1(Human; AF-P54259)。(i)预测氨基酸残基1至413的Alphafold蛋白模型HTT(HTTQ21(1-414)),其中包含21个聚谷氨酰胺。预测的HTTQ21(1-414)AlphaFold模型叠加在灰色(蛋白质数据库ID 6x9O,2.60Å分辨率[99]中显示的Cryo-EM确定的HTT-HAP40蛋白结构[99],其中未在Cryo-Em结构中确定PolyQ区域。HTTQ21(1-414)模型高度对齐冷冻结构。由黑色矩形构建的残基代表野生型Polyq区域。比例尺表示源自AlphaFold预测的PLDDT值,并表示每日置信度度量[97]:PLDDT> 90,高精度; 90> plddt> 70建模良好; 70> PLDDT> 50低置信度; PLDDT <50差精度。ar,雄激素受体; ATN1,Atrophin 1; atxn1,ataxin 1; atxn2,ataxin 2; atxn3,ataxin 3; atxn7,ataxin 7; Cacna1a,钙电源门控通道亚基Alpha1 A(Cav2.1);冷冻电子,冷冻电子显微镜; HTT,亨廷顿; PLDDT,每个保留模型置信度评分; Polyq,聚谷氨酰胺; TBP,TATA结合蛋白。
1)Suzuki,T。(2021)tRNA修改的扩展世界及其疾病相关性。nat。修订版mol。细胞生物。 ,22,375 - 392。 2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。 febs J.,288,7096 - 7122。 3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y. (2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。 核酸res。 ,46,1565 - 1583。 4) (2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。 J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。细胞生物。,22,375 - 392。2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。febs J.,288,7096 - 7122。3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y.(2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。核酸res。,46,1565 - 1583。4)(2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。J. Clin。投资。,121,3598 - 3608。5)(2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。SCI。adv。,7,EABF3072。6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y.(2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。nucl。酸res。,52,9230 - 9246。7)Blanco,S.,Dietmann,S.,Flores,J.-V.,Hussain,S.,Kutter,C.,Humphreys,P.,Lukk,M.,Lombard,P.,Treps,L.,Popis,M。等。(2014)TRNA的异常甲基化将细胞应激与神经发育疾病联系起来。Embo J.,33,2020 - 2039。
发明说明CD47-SIRPα“ do-not-eat-me”信号轴是髓样特异性的先天免疫检查点。癌细胞在细胞表面表达CD47,使它们能够通过先天免疫系统逃避检测,从而避免巨噬细胞破坏。抑制CD47-SIRPα轴触发巨噬细胞的吞噬作用。谷氨酰胺基肽蛋白基转移酶样蛋白(QPCTL或ISOQC)是一种高尔基居住的酶,可催化N端谷氨酰胺和靶蛋白上N-末端谷氨酰胺和谷氨酸残基的环化为吡格豪拉氨酸酯残基(PGLU)。CD47上焦谷氨酸对SIRPα结合很重要。 我们已经在亚纳摩尔范围内鉴定出具有ISOQC抑制活性的有效ISOQC抑制剂。 DBPR22998显着降低了抗CD47抗体在细胞表面的结合,并防止了人类SIRPα-FC与细胞表面CD47在实体瘤和测试的血液学癌细胞系中的相互作用。 此外,DBPR22998与抗CD20抗体利妥昔单抗结合使用,增强了人类B细胞淋巴瘤细胞中抗体依赖性细胞吞噬作用。 体内,与单独的抗体肿瘤模型中的固体肿瘤模型和血液学癌症相比,与单独的抗体相比,抗体疗法诱导肿瘤消退的口服DBPR22998诱导肿瘤消退,平均生存时间延长。 DBPR22998在小鼠和大鼠中具有出色的药代动力学特性和良好的口服吸收(F> 30%)。焦谷氨酸对SIRPα结合很重要。我们已经在亚纳摩尔范围内鉴定出具有ISOQC抑制活性的有效ISOQC抑制剂。DBPR22998显着降低了抗CD47抗体在细胞表面的结合,并防止了人类SIRPα-FC与细胞表面CD47在实体瘤和测试的血液学癌细胞系中的相互作用。此外,DBPR22998与抗CD20抗体利妥昔单抗结合使用,增强了人类B细胞淋巴瘤细胞中抗体依赖性细胞吞噬作用。体内,与单独的抗体肿瘤模型中的固体肿瘤模型和血液学癌症相比,与单独的抗体相比,抗体疗法诱导肿瘤消退的口服DBPR22998诱导肿瘤消退,平均生存时间延长。DBPR22998在小鼠和大鼠中具有出色的药代动力学特性和良好的口服吸收(F> 30%)。
结果:发现NAFLD与糖尿病神经病和肾病的发生率有关(优势比:1.338(95%的置置间隔:1.091-1.640)和1.333(分别为1.007-1.764))。碱性磷酸酶酶与糖尿病神经病和肾病的较高风险有关((风险估计:1.002(95%CI:1.001-1.003)和1.002(分别为1.001-1.004)))。此外,γ-谷氨酰胺转移酶与糖尿病性肾病的风险更高(1.006(1.002-1.009)。天冬氨酸氨基转移酶和丙氨酸氨基转移酶与糖尿病性视网膜病的风险成反比(0.989(0.979-0.998)和0.990(0.983-0.996))。此外,ARPI_T(1),ARPI_T(2)和ARPI_T(3)被证明与NAFLD相关(1.440(1.061-1.954),1.589(1.163-2.171)和2.673