多年来,量子比特已成为量子计算事实上的基础,其宿主平台多种多样:超导电路 [ 2 , 3 ] ::::: [2,3]、捕获离子 [ 4 , 5 ] 和量子点 [ 6 ] 等等。最近的研究使用基于量子比特的量子计算机来模拟费米子系统 [ 7 – 9 ]。然而,从量子比特到局部费米子模(LFM)的映射效率低下,因为它会给计算带来额外的开销 [ 10 , 11 ]。例如,从 n 个量子比特到费米子的映射需要通过 Jordan-Wigner 变换进行 O ( n ) 次额外运算 [ 12 ],通过 Bravyi-Kitaev 变换进行 O (log n ) 次额外运算 [ 1 ]。避免量子比特到 LFM 映射中的开销的另一种方法是使用已经使用局部费米子模式运行的量子计算机 [ 1 ]。此外,局部费米子模式的优势不仅限于费米子系统的模拟 :::::::: 费米子 :::::::: 系统
我们在几何沮丧的三角形晶格中研究了费米子莫特绝缘子,这是一种用于研究旋转液体和自发时间转换对称性破坏的范式模型系统。我们的研究证明了三角形莫特绝缘子的制备,并揭示了所有最近邻居之间的抗磁性自旋旋转相关性。我们采用真实空间的三角形几何量子气体显微镜来测量密度和自旋可观测物。将实验结果与基于数值链接群集扩展和量子蒙特卡洛技术的计算进行了比较,我们证明了沮丧的系统中的热度法。我们的实验平台引入了一种替代方法,用于沮丧的晶格,为未来研究外来量子磁性的研究铺平了道路,这可能导致哈伯德系统中量子自旋液体的直接检测。
我们根据一个参数计算纯态下通用多体费米子系统的量子费歇尔信息。我们讨论了参数印在基态、状态系数或两者中的情况。在系数的参数依赖性来自哈密顿量演化的情况下,我们推导出一个特别简单的量子费歇尔信息表达式。我们将我们的发现应用于量子霍尔效应,并评估与有效哈密顿量基态系统磁场最佳测量相关的量子费歇尔信息。泡利原理强制占据高动量电子态导致灵敏度的“超海森堡”缩放,其幂律取决于传感器的几何形状。
我们提出了一种数模量子算法,用于模拟 Hubbard-Holstein 模型,该模型描述了强关联费米子-玻色子相互作用,该算法采用具有超导电路的合适架构。它由一个由谐振器连接的线性量子比特链组成,模拟电子-电子 (ee) 和电子-声子 (ep) 相互作用以及费米子隧穿。我们的方法适用于费米子-玻色子模型(包括 Hubbard-Holstein 模型描述的模型)的数模量子计算 (DAQC)。我们展示了 DAQC 算法的电路深度减少,该算法是一系列数字步骤和模拟块,其性能优于纯数字方法。我们举例说明了半填充双位点 Hubbard-Holstein 模型的量子模拟。在这个例子中,我们获得了大于 0.98 的保真度,表明我们的提议适合研究固态系统的动态行为。我们的提议为计算化学、材料和高能物理的复杂系统打开了大门。
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。
模拟多体费米子系统的特性是材料科学、量子化学和粒子物理学领域一项突出的计算挑战。尽管基于量子比特的量子计算机可能比传统设备更有效地解决这一问题,但编码非局部费米子统计数据会引入所需资源的开销,从而限制其在近期架构中的适用性。在这项工作中,我们提出了一种费米子量子处理器,其中费米子模型在费米子寄存器中局部编码,并使用费米子门以硬件高效的方式进行模拟。我们特别考虑了可编程镊子阵列中的费米子原子,并开发了不同的协议来实现非局部门,从而在硬件级别保证费米统计数据。我们使用这个门集以及里德堡介导的相互作用门,为数字和变分量子模拟算法找到有效的电路分解,这里以分子能量估计为例进行说明。最后,我们考虑一种组合费米子量子比特架构,其中利用原子的运动自由度和内部自由度来有效地实现量子相位估计以及模拟格点规范理论动力学。
图2。在模拟时间时l = 500的快照𝜏(a)0,(b)9.8×10 6和(c)1.9×10 7的EO。217 Kymoknot确定的打结区域是红色的,而未打结的聚合物部分为218彩色蓝色。(d)沿着DNA链的3 1 219 Trefoil结中包含的珠子指数的开始(红线)和末端(蓝线),用于用于在面板中生成快照的轨迹(a,b,c)。220(e)结,n结中的珠子数量是根据(d)计算的模拟时间的函数。221
我们从自由费米子的角度研究变异量子算法。通过设计相关的LIE代数的明确结构,我们表明,量子相比优化算法(QAOA)在一维晶格上 - 具有脱钩角度 - 具有脱钩的角度 - 能够准备所有符合电路符号的费米斯高斯州的状态。利用这些宗教信仰,我们在数值上研究了这些对称性和目标状态的局部性之间的相互作用,并发现缺乏符号的情况使非局部状态更容易预先预测。对高斯状态的有效的经典模拟,系统尺寸高达80和深电路,用于研究电路过度参数化时的行为。在这种优化方案中,我们发现迭代的迭代数与系统大小线性线性缩放。更重要的是,我们观察到,与溶液收敛的迭代次数会随电路深度呈指数降低,直到它以系统尺寸为二次的深度饱和。最后,我们得出的结论是,可以根据梯度提供的更好的局部线性近似图来实现优化的改进。