m-chardon@northwestern.edu 1 美国伊利诺伊州芝加哥西北大学神经科学系;2 美国加利福尼亚州洛杉矶加州州立大学电气与计算机工程系;3 美国伊利诺伊州莱蒙特阿贡国家实验室阿贡领导力计算设施;4 美国伊利诺伊州埃文斯顿西北大学电气工程系;5 美国伊利诺伊州芝加哥西北大学生物医学工程系;6 英特尔公司,美国加利福尼亚州圣克拉拉;7 美国华盛顿大学生理学和生物物理学系;8 美国伊利诺伊州芝加哥 Shirley Ryan 能力实验室物理医学与康复系;9 美国伊利诺伊州芝加哥西北大学物理治疗与人体运动科学系; 15 10 美国伊利诺伊州埃文斯顿西北大学-阿贡科学与工程研究所 (NAISE) 16
❖ 由于电路元件的小型化、连接电路板的电线的大幅缩短以及冷却技术的进步(例如,在各种超级计算机系统中,处理器和内存电路被浸入低温流体中以达到其运行最快的低温),这个极限几乎已经被达到。
量子计算机将信息编码为量子比特的状态,并使用外部信号(例如通过微波或激光)来操纵它们。利用量子物理的特性,量子算法可以使用这些特性来实现资源扩展的指数级改进 2 。已经开发了几种这样的量子算法 [11];尽管如此,必须强调的是,量子计算机并非现有计算技术的替代品。量子计算机更适合解决那些所需传统计算资源随问题规模呈指数级增长的问题。其他问题可能从量子计算机中获得的收益较小甚至为零,辅助任务也是如此,如预处理和后处理、I/O 和可视化。这种理解有助于将量子计算机定位在大量计算硬件中,作为现有高性能计算系统的加速器,专门适用于某些类型的问题,量子计算机将成为这些问题的颠覆性技术。
在这项研究中,HPC 驱动的癌症研究为长期癌症幸存者带来了更好的结果。癌症检测和治疗方面的进步大大提高了存活率。但随着存活率的提高,需要尽量减少长期治疗相关的负面影响。特别是,接受放射治疗的儿童以后更容易患上由放射引起的继发性癌症(致癌作用)。研究人员在超级计算机模拟的帮助下进行了临床试验,这些试验有助于提高长期晚期癌症治疗的成功率。模拟驱动的研究产生了宝贵的数据,这些数据被用于指导临床和卫生政策决策
● 计算机对我们的生活有很大的帮助 ● 传统计算机被广泛使用 ● 此外,超级计算机帮助我们解决密码学等复杂计算或预测疾病如何在全球传播 ● 然而,量子计算机比任何超级计算机都强大。它们可以解决我们从未解决过的问题。例如,设计一种新的药物化合物、分析基因组或找到对抗病毒的方法 ● 所以从手机到量子计算机,计算机无处不在!
性能因使用,配置和其他因素而异。在www.intel.com/performanceIndex上了解更多信息。性能结果基于配置中显示的日期的测试,并且可能无法反映所有公开可用的更新。有关配置详细信息,请参见备份。没有绝对安全的产品或组件。您的成本和结果可能会有所不同。英特尔不控制或审核第三方数据。您应该咨询其他来源以评估准确性。您的成本和结果可能会有所不同。Intel Technologies可能需要启用硬件,软件或服务激活。©Intel Corporation。英特尔,英特尔徽标和其他英特尔商标是英特尔公司或其子公司的商标。其他名称和品牌可能被称为他人的财产。052021/rjmj/rl/pdf请回收347108-001US
量子计算的经典模拟对于验证量子设备和评估量子算法至关重要。我们提出了在Sunway Taihulight超级计算机上开发的新量子电路模拟器。与其他模拟器相比,本文以两个方面进行区分。首先,我们的模拟器更加通用。模拟器由三个相互独立的部分组成,以使用不同方法计算量子状态的完整,部分和单个幅度。它具有模拟噪声效果并支持更多类型的量子操作的功能。第二,我们的模拟器具有很高的效率。模拟器以两级平行结构进行设计,该结构可在分布式的多核Sunway Taihulight Supercupter上有效实现。随机量子电路可以分别在完整,部分和单个振幅上分别使用40、75和200个QUAT模拟。作为模拟器的说明性应用,我们提出了一个量子快速泊松求解器和用于评估先验函数的量子算法的算法。我们的模拟器有望在各个领域开发量子算法中具有更广泛的应用。
AI 技术的发展对于实现日本科技政策中宣布的“Society 5.0”不可或缺。随着这种发展的进行,AI 学习所需的计算资源不断增加。通过 K 计算机和超级计算机 Fugaku(以下简称 Fugaku)的开发,富士通一直提供具有丰富计算资源的高性能计算 (HPC) 系统。现在,为了利用 HPC 系统丰富的计算资源进行 AI 学习,我们正在与 RIKEN 合作在 Fugaku 上开发 AI 基础设施。本文介绍了我们与 RIKEN 联合在 Fugaku 上测试和评估 AI 相关软件性能的当前状态以及我们未来在 HPC 和 AI 方面的工作。
1) 实现低流量高效液冷 为了提高性能,富岳的 CPU 数量是 K 计算机的四倍。此外,CPU 本身的性能也得到了提高,每个 CPU 产生的热量也更大。因此,每个机架的发热量约为 K 计算机的六倍,需要提高冷却性能。通常,通过增加冷却水的流量来改善冷却。然而,这需要更大直径的管道,并阻碍了高密度安装,这是最初的目标。因此,实现低流量高效液冷是一个问题。 2) 在有限的工作空间内进行现场维护 在富岳,CMU 的维护需要现场维护,即在系统本身继续运行时进行的维护工作。然而,CMU 有许多连接,例如用于高速信号、液冷管道和电源的连接,这些连接必须在安装期间插入和移除。
K计算机及其后继超级计算机“ Fugaku”是世界一流的超级计算机,它们是由88,192和158,976个相互联系的节点组成的大规模平行计算机。通过富士通开发的互连技术使这种100k节点的可伸缩性成为可能。技术的分区和虚拟圆环功能可以防止多个并行程序之间的通信干扰和支持每个并行程序中通信模式的优化,以确保稳定的通信性能,并允许分区即使在tain tain失败的节点上也可以使用以获得高可用性。本文介绍了K计算机和超级计算机Fugaku中使用的高维度的互连技术。