泰顿香山(2024)于8月22日起起源于玛丽安娜群岛,在日本附近缓慢行动,并于8月27日以极强的力量接近阿马米地区。然后,它向北转移了路线,并以极强的类别向九州南部转移,并在8月29日的08:00左右与强大的类别相比,在Kagoshima县Satsumasendai City附近登陆。由于从西部到东部的大气条件非常不稳定,因此某些地区受到与云层云相关的龙卷风的影响。在宫崎骏县,几个城镇在28和29号被龙卷风袭击。资料来源:日本气象局网站
Marc Lesko,Whisper Aero 的 CNC 机械师。图片来源:Carlos Jones/ORNL,美国能源部 2024 年 1 月,这家成立 3 年的初创公司的员工搬进了新总部,将布满灰尘的房间翻新成 21 世纪的航空航天技术设施,其中设有研发原型、测试、制造和运输区域。在曾经矗立着大型印刷机的旧印刷车间,一条 140 英尺长的风洞的脱节部分现在等待重新组装。一家明尼苏达州的自行车公司将这座风洞捐赠给了田纳西理工大学,该大学现在拥有这栋建筑,并将其改造成一个先进的移动业务孵化器,将 130,000 平方英尺的空间中的 40,000 平方英尺租给了 Whisper Aero。这家初创公司的推进创新是一种先进的电动涵道风扇 (EDF),旨在取代大多数飞机上使用的传统化石燃料燃烧发动机。与当今最高效的喷气发动机相比,目前的 EDF 可在 200 至 400 节的速度下将推进效率提高至少 5% 至 10%。Whisper Aero 声称,其专利设计提供了超越当前最先进 EDF 的关键突破,即叶片数量非常多的风扇,其叶片通过频率被推入人类听觉无法听到的超声波范围内。根据该公司的测试,其 EDF 至少安静 100 倍,并且效率提高了 20%
AI 技术的发展对于实现日本科技政策中宣布的“Society 5.0”不可或缺。随着这种发展的进行,AI 学习所需的计算资源不断增加。通过 K 计算机和超级计算机 Fugaku(以下简称 Fugaku)的开发,富士通一直提供具有丰富计算资源的高性能计算 (HPC) 系统。现在,为了利用 HPC 系统丰富的计算资源进行 AI 学习,我们正在与 RIKEN 合作在 Fugaku 上开发 AI 基础设施。本文介绍了我们与 RIKEN 联合在 Fugaku 上测试和评估 AI 相关软件性能的当前状态以及我们未来在 HPC 和 AI 方面的工作。
摘要TPUV4(张量处理单元)是Google的机器学习培训的第三个生成加速器,用自定义的3D圆环互连部署为4096节点超级计算机。在本文中,我们描述了我们设计和操作软件基础架构的经验,该软件基础架构允许TPUV4超级计算机大规模运行,包括自动故障弹性和硬件恢复的功能。我们采用软件定型网络(SDN)方法来管理TPUV4的高频带芯片间互连(ICI)Fab-fab-fab-fab-ric,使用光电路切换到动态配置围绕机器,chip和链接故障的操作路线。我们的基础架构检测故障,并自动触发对构造的结果,以最大程度地减少运行工作负载的破坏,并为受影响的组件启动修复和维修工作流。与硬件和软件的维护和升级工作流相似的技术接口。我们的动态重新配置方法使我们的TPUV4超级计算机可以实现99.98%的系统可用性,优雅地处理约1%的培训工作经历的硬件中断。
2018 年,桑迪亚国家实验室对建筑环境可持续性的承诺得到了认可,当时阿尔伯克基校区获得了 LEED v. 4 校园认证。该认证是一种更灵活、基于性能的方法,要求在整个建筑生命周期中通过可持续发展努力取得可衡量的成果。桑迪亚国家实验室是第一个获得该地位的 DOE 实验室,巩固了其作为可持续实验室实践先驱的地位,并为其他 DOE 机构树立了标杆。随着实验室的不断发展,其对创新和可持续性的承诺无疑将在应对未来的复杂挑战中发挥关键作用。
由无源元件组成的电路元件对于实现高能量和功率密度具有重要意义,并且电路的研究结果接近准确。本文阐明了在不同应用中实现高电导率、电感和电容值的可能方法,并讨论了它们的组合。主要目标是获得高电感、电容和电导值。超级电容器是一种适用于脉冲功率应用的脉冲装置,其技术已在各种应用中得到充分认可。然而,超级电感的概念很新,它可以为大量应用开辟可能性。本文旨在通过对超级电容器和超导体超级电感的分析方法,简要介绍和提供有关实现超级电感的可能性的信息,概述相对磁导率和电感值、优点和应用。
在这项研究中,使用商业Flip-Chip Bonder在Pyrex和Silicon底物之间进行了Au-Sn Eutectic超薄金属堆栈(〜1μM)键的详细表征。通过在320至380 o C之间改变键合温度在2至10 MPa之间,在三个不同的键尺寸的9、49和100 mm 2上进行了彻底的配方表征和开发。结果表明,在较高的温度下观察到更好的键质量,但不受键压力幅度的影响。还发现,接触的平坦度是确定键均匀性并因此质量的最重要参数之一,这对于超薄金属键尤其重要。此外,这项研究特别强调通过透明的Pyrex顶部底物观察键均匀性和金属溢出。随着温度的升高,平均溢流宽度增加,在380 O C时达到300μm,但没有受到施加的键压力的显着影响。同时,超薄的键层使我们有可能观察到键区内形成的几种不同类型的微观结构,这提供了有关样品冷却速率,晶粒尺寸和金属间合金中的重要信息。在特定情况下,由于在共晶反应期间,Au和SN的迁移速率不同,因此在光学显微镜下在光学显微镜下观察到Kirkendall空隙。我们认为,这是使用非破坏性光学成像技术对键合合金中的空隙的首次成功观察。在成功表征金属回流后,从债券位点出发,一种简单的控制这种溢出的方法已通过精确控制的
m--chardon@northwestern.edu 1 Neuroscience系,西北大学,伊利诺伊州芝加哥; 2美国加利福尼亚州洛杉矶的加利福尼亚州立大学电气和计算机工程系7分。 3 Argonne领导力计算设施,Argonne National 9实验室,美国伊利诺伊州Lemont; 4美国伊利诺伊州埃文斯顿市西北10大学电气工程系; 5美国伊利诺伊州芝加哥西北11大学生物医学工程系; 6英特尔公司,美国加利福尼亚州圣克拉拉;美国华盛顿州西雅图市华盛顿大学的12个生理学与生物物理学系7; 8实物13医学和康复,美国伊利诺伊州芝加哥的雪莉·瑞安(Shirley Ryan)能力实验室; 9物理疗法和人类运动科学,西北大学,伊利诺伊州芝加哥; 15 10美国伊利诺伊州埃文斯顿的西北 - 阿尔贡科学与工程学院(NAISE)16m--chardon@northwestern.edu 1 Neuroscience系,西北大学,伊利诺伊州芝加哥; 2美国加利福尼亚州洛杉矶的加利福尼亚州立大学电气和计算机工程系7分。 3 Argonne领导力计算设施,Argonne National 9实验室,美国伊利诺伊州Lemont; 4美国伊利诺伊州埃文斯顿市西北10大学电气工程系; 5美国伊利诺伊州芝加哥西北11大学生物医学工程系; 6英特尔公司,美国加利福尼亚州圣克拉拉;美国华盛顿州西雅图市华盛顿大学的12个生理学与生物物理学系7; 8实物13医学和康复,美国伊利诺伊州芝加哥的雪莉·瑞安(Shirley Ryan)能力实验室; 9物理疗法和人类运动科学,西北大学,伊利诺伊州芝加哥; 15 10美国伊利诺伊州埃文斯顿的西北 - 阿尔贡科学与工程学院(NAISE)16