777 航空电子设备首次在商用运输机上使用集成模块化航空电子设备概念。主显示器、飞行管理、推力管理、控制维护、数据通信、飞机状态监控和飞行数据记录等功能在两个航空电子设备柜中实现,每个柜均配有八个线路可更换模块。四个输入/输出模块和四个核心处理器模块使用通用硬件和软件架构。与联合系统相比,这种实现方式可降低重量和功耗,同时提高可靠性、简化系统接口并改善故障隔离。新的多发射机数据总线 (ARINC 629) 可增加所有系统之间的通信,从而提高功能性、可靠性、成本和重量。软件可在机上加载,以降低备件成本并允许更快地整合功能改进。
777 航空电子设备首次在商用运输中使用了集成模块化航空电子设备概念。主显示器、飞行管理、推力管理、控制维护、数据通信、飞机状态监控和飞行数据记录等功能在两个航空电子设备柜中实现,每个机柜都有八个线路可更换模块。四个输入/输出模块和四个核心处理器模块使用通用的硬件和软件架构。与联合系统相比,这种实现方式可减轻重量和功耗,同时提高可靠性、简化系统接口并改善故障隔离。新的多发射机数据总线 (ARINC 629) 允许增加所有系统之间的通信,从而提高功能性、可靠性、成本和重量。软件可在机上加载,以降低备件成本并允许更快地纳入功能改进。
摘要:本文详细描述了引信 vAF-M17 的微控制器软件工作流程以及详细的硬件和软件架构。引信 vAF-M17 和保险启动器 vFI-M17 一起用于航空炸弹 MK-82、MK-84、BLU-109,具有与引信 FMU-139 相同的功能特性。引信 vAF-M17 的心脏和大脑是 8 位微控制器,它管理着整个操作。硬件和软件的设计主要强调操作安全性,以防止任何不良影响。为此,硬件设计考虑了安装在保险启动器内部的压差测量单元,该单元提供有关航空炸弹速度的信息。电子设备知道第一个安全条件已满足,并且航空炸弹已与飞机和飞行员保持一定距离,以执行引信所需的功能(通过爆炸激活炸弹内的炸药填充物)。另一个对正常运行至关重要的传感器是加速度计,它具有撞击检测的可能性,操作员可以预设所需的“g”值。
摘要 —本文介绍了基于同步定位和地图构建 (SLAM) 的自主导航系统的开发。本研究的动机是找到一种自主导航室内空间的解决方案。室内导航具有挑战性,因为它可以永远发展。解决这个问题对于许多服务来说都是必要的,例如清洁、医疗行业和制造业。本文的重点是描述为这个提议的自主系统开发的基于 SLAM 的软件架构。评估了该系统面向智能轮椅的潜在应用。当前的室内导航解决方案需要某种引导线,例如地板上的黑线。有了这个提议的解决方案,室内不需要翻新来适应这个解决方案。此应用程序的源代码已开源,因此可以重新用于类似的应用程序。此外,预计这个开源项目将由广泛的开源社区在其当前状态的基础上得到改进。索引术语 —深度学习、导航、物体避让、SLAM
任何“由 FIWARE 提供支持”的软件架构(对应于智慧城市垂直解决方案或整体智慧城市平台)都是围绕现实世界的数字孪生数据表示构建的。这种表示建立在实体之上,即所谓的数字孪生,其特点是属性值从许多不同的来源收集,并不断维护并可在适当的时间访问。这些属性不仅限于可观察(可测量)数据,还包括推断数据(通过 AI/ML 数据处理随时间获得的增强洞察力和知识)。FIWARE 可以将所有这些数据纳入上下文,从静态数据(例如公交车的“车牌”)到动态数据(例如公交车上的“速度”或“乘客人数”,街道的“当前交通状况”和“预测 30 分钟后的交通状况”),甚至是周期性变化的数据(例如公交车上的“司机”可能每天更换两次)。监测属性的当前值非常重要,但将它们与历史值一起分析也至关重要,因为这为预测未来的状态或条件提供了手段。
数据量的不断增长以及随之而来的对计算能力需求的激增,正在影响科学计算,极端数据科学工作流程的兴起就是明证。随着对计算能力的需求不断增加,量子计算已被提出作为一种实现这种需求的方式。它可以为许多科学应用(即分子动力学、量子化学、组合优化和机器学习)提供显著的理论加速。因此,将量子计算机集成到计算连续体中是一种加速科学计算的有前途的方法。然而,科学计算界仍然缺乏必要的工具和专业知识来充分利用量子计算机在执行科学工作流程等复杂应用方面的能力。在这项工作中,我们描述了量子计算的主要特征及其对科学应用的主要好处,然后我们形式化了混合量子经典工作流程,探索如何识别量子组件并将它们映射到资源上。我们在实际用例上演示了概念,并为混合工作流管理系统定义了软件架构。
近来,无人机 (UAV) 作为一个快速发展的领域,吸引了越来越多的科学家和消费者的关注。人们对多旋翼无人机尤其感兴趣,它们因其低速飞行、悬停和垂直起降能力而被认为是用于高质量航空摄影、摄像、监控和其他地形探索的良好飞行平台。所述特性使它们易于在空间有限的条件下使用。显然,这种飞行器的行为是不稳定的,因此需要负责稳定和导航功能的飞行控制系统 (FCS)。此外,FCS 能够提供完全自主飞行的能力。当代电子技术的快速发展使得制造低成本和紧凑型 FCS 成为可能。然而,实施的测量单元的精度不高。多传感器数据融合是提高精度的方法之一。本文介绍了 FCS 开发中需要指导的要求和一般概念,以及飞行测试中获得的结果及其比较。特别关注多传感器数据融合方法,该方法可以提高飞行精度和可靠性。此外,还提供了硬件和软件架构的描述。
近年来,数据可用性的提高以及计算能力的增强使研究人员能够构思具有实时输入的生产计划和控制方法。文献中有大量使用模拟在线进行生产计划和控制决策的技术。然而,在真实系统上测试这些方法通常是不切实际的,而且数字实例上的实验是有限的,因为它们没有捕捉到物理方面。这项工作建议使用实验室规模的制造系统模型和符合工业标准的软件架构来测试实时模拟方法。这样的模型可以重现真实工厂环境中的物质流和生产控制逻辑。通过利用这种设置来测试新方法和新工具,可以提高他们自己可实现的技术就绪水平 (TRL)。该实验室已用于在柔性制造系统 (FMS) 模型上设置实时重新调度问题。测试涉及与当前系统状态一致的模拟模型,用于在线识别和实施减少预期完工时间的生产调度规则。结果表明,所提出的实验室规模模型可成功用于测试生产计划和控制方法。
摘要:由于航空航天和国防工业的生产过程复杂且技术密集,将工业 4.0 引入飞机复合材料的制造过程是不可避免的。工业 4.0 中的数字孪生和信息物理系统是发展数字化制造的关键技术。由于创建高保真虚拟模型非常困难,因此飞机制造商的数字化制造发展具有挑战性。在本研究中,我们从数据模拟的角度提供了一个视图,并采用机器学习方法来简化数字孪生中的高保真虚拟模型。这个新概念称为数据孪生,支持模拟的可部署服务称为数据孪生服务 (DTS)。依靠 DTS,我们还提出了一种微服务软件架构,即信息物理工厂 (CPF),以模拟车间环境。此外,CPF 中还有两个作战室可用于建立协作平台:一个是物理作战室,用于集成真实数据,另一个是网络作战室,用于处理模拟数据和 CPF 的结果。
摘要:由于航空航天和国防工业的生产过程复杂且技术密集,将工业 4.0 引入飞机复合材料的制造过程是不可避免的。工业 4.0 中的数字孪生和信息物理系统是发展数字化制造的关键技术。由于创建高保真虚拟模型非常困难,因此飞机制造商的数字化制造发展具有挑战性。在本研究中,我们从数据模拟的角度提供了一个视图,并采用机器学习方法来简化数字孪生中的高保真虚拟模型。这个新概念称为数据孪生,支持模拟的可部署服务称为数据孪生服务 (DTS)。依靠 DTS,我们还提出了一种微服务软件架构,即信息物理工厂 (CPF),以模拟车间环境。此外,CPF 中还有两个作战室可用于建立协作平台:一个是物理作战室,用于集成真实数据,另一个是网络作战室,用于处理模拟数据和 CPF 的结果。