覆盖度在外显子组测序中达到最高,从27.7X到33.6X不等。外显子组的中位覆盖度从14X到100X不等,而基因组测序则从27X到33X不等。从受试者的覆盖度来看,对于外显子组测序,超过58.8%的受试者对所有变异的覆盖度超过10X,对于许多变异,这个值达到了100%。对于15X和20X的覆盖度也是如此,拥有这种覆盖度的受试者比例最低分别为49.9%和35.7%,在很多情况下,这个值达到了100%。对于基因组测序,超过99.1%的受试者对所有变异的覆盖度超过10X,对于许多变异,这个值达到了100%。 15X 和 20X 以上的覆盖率也是如此,具有此类覆盖率的受试者的最低比例分别为 96.0% 和 82.9%,在许多情况下,该值达到 99.3% 和 95.1%。这些来自外显子组和基因组测序的覆盖率统计数据确保了变异调用的高可信度,并强调了我们
广义关节过度运动(GJH)是韧带松弛的结果,通常以贝顿评分检查,其患病率通常取决于年龄,性别和种族[1,2]。gjh通常是遗传来源,但也可以通过锻炼,拉伸或创伤获得[3,4]。尽管GJH增强了需要灵活性的活动,但它也构成了并发症的风险,特别是肌肉骨骼症状[5-7]。先前作者的初始假设是,超动关节是不稳定的,它倾向于重复的微型创伤,会随着时间的推移破坏机械感受器[8,9]。这将导致关节损伤,关节痛和其他并发症,例如受损的本体感受,强度受损和平衡差[10,11]。当GJH与上述肌肉骨骼症状相关联时,它被称为过度运动频谱障碍(HSD)[12]。尽管GJH是出现肌肉骨骼症状的风险,但肌肉骨骼症状的生物标志物和临床预测因子也很大可变[13-15]。有趣的是,当肌肉骨骼系统的生长正在进行时,在生物学上不成熟的儿童中,过度运动的继承性更为普遍[13,16]。如果患有GJH的孩子更容易容易出现微型创伤,这仍然是一个问题,因为他们的协调较低或具有较小的肌肉力量以适应突然平衡障碍[17]。这提出了一个建议,即未成熟的肌肉力量在GJH中起作用。在病理的背景下,力量和平衡很重要[18]。它们对于许多日常活动和休闲活动至关重要,并且假定两者的赤字将对个人的参与水平产生负面影响[19]。肌肉适应性是肌肉活动不同组成部分(肌肉力量,力量和耐力)的协同作用,使多个肌肉群以各种关节角度的协调方式共同工作,并取决于活动的不同时期[20-22]。肌肉力量是一个人可以产生的最大力量或可以举起的重量[23],而爆炸能力是在运动爆发中立即产生最大肌肉收缩的能力[24]。另一方面,在不疲劳的情况下重复运动的能力是肌肉耐力[25,26]。等距强度通过肌肉收缩对一个关节的最大电阻在一个方向上的最大电阻来测试,其余身体处于稳定位置[27]。最后,执行基本运动技能所需的力量称为功能强度[26]。然而,在等距条件下大部分评估了运动过度的个体的肌肉力量,而功能强度可能更相关
最近根据血糖略有升高,没有其他危险因素被诊断为糖尿病前期。为了减轻我的困惑和焦虑,我将我的流行病学和卫生服务研究培训应用于科学文献。我的结论是:我和许多其他人都被诊断出来了。2型糖尿病是一种国际上迅速发病和死亡率的国际公共卫生问题。1这是美国最昂贵的慢性病,其中2人遭受了约3700万人(占人口的11%),其中23%未被诊断。3糖尿病与我们的服从性流行有关,并不成比例地影响那些收入低和有色人种的人。但旨在识别高风险人并防止糖尿病发展的前糖尿病是一个相对较新的想法。和专家就术语,筛选标准,解释和含义强烈分歧。
摘要:锰(MN)是一种用于各种酶类别的辅因子,是所有生物体的必需痕量金属。但是,过度暴露于MN会导致神经毒性。在这里,我们评估了暴露于Mn氯化物(MNCL 2)对生存力,形态,突触功能(基于神经素表达)和斑马鱼幼虫行为的影响。MNCL 2从受精后2.5 h暴露导致受精后5天的生存率降低(60%)。表型变化影响了身体长度,眼睛和嗅觉器官的大小以及视觉背景适应。这伴随着神经素免疫染色的荧光强度和神经素蛋白编码基因NRGNA和NRGNB的表达水平的降低,表明存在突触改变。此外,过度暴露于MNCL 2导致幼虫表现出姿势缺陷,运动活动的减少以及对光环境的偏爱受损。从鱼类水中去除MNCL 2后,斑马鱼幼虫恢复了它们的色素沉着模式并使其运动行为归一化,表明MN神经毒性的某些方面是可逆的。总而言之,我们的结果表明,MN过度暴露会导致斑马鱼幼虫中明显的形态改变,神经素表达的变化和行为障碍。
摘要帕金森氏病(PD)的特征是黑质(SNC)多巴胺(DA)神经元的死亡,但在其死亡之前的病理生理机制仍然未知。PD中DA神经元的活性可能会改变,但我们对活性的慢性变化是否可能导致退化。为了解决这个问题,我们开发了一种化学遗传(Dreadd)小鼠模型,以长期增加DA神经元的活性,并使用离体电生理学证实了这种增加。DA神经元的慢性过度激活导致在光周期期间运动活性的延长,并在黑暗循环期间减少,这与DA释放和昼夜节律干扰的慢性变化一致。我们还观察到了SNC投影的早期优先退化,从而概括了SNC轴突选择性脆弱性的PD标志和腹侧段面积轴突的比较弹性。接下来是中脑DA神经元的最终丧失。连续的DREADD激活导致基线钙水平持续增加,这支持了在神经变性过程中钙增加的重要作用。最后,来自研究中脑DA神经元和纹状体靶标的无多小鼠的空间转录组学,以及与人类患者样品的交叉验证,提供了对多动症诱导的毒性和PD的潜在机制的见解。因此,我们的结果揭示了SNC DA神经元对增加神经活性的优先脆弱性,并支持增加神经活动在PD驱动变性中的潜在作用。引言帕金森氏病(PD),尼格拉(Nigra)pars commanta(SNC)多巴胺(DA)神经元的丧失导致基底神经节中电路动态的严重破坏。多巴胺损失的补偿涉及在电路中存活的SNC神经元和其他下游神经元的活性变化。的确,在大鼠骨纹状体途径的部分病变之后,存活的SNC DA神经元是多动(1),释放额外的多巴胺(2-5),并减少了多巴胺再摄取(2)。DA神经元的巨大丧失(1、6、7),线粒体复合物I活性的完全丧失以及线粒体PD蛋白PINK1(9)的损失也会导致爆发的爆发增加(10,11)。因此,在广泛的损失或压力的情况下,DA神经元易于改变活性,这可能与电路水平的变化有关。例如,灵长类动物模型的证据表明,在PD中,丘脑下核向SNC发送了谷氨酸能投射的核(12)。虽然系统级变化可能是补偿性的,并且部分恢复了多巴胺水平和整体运动功能,但它们也可能带来不利的后果。此外,包括α-突触核蛋白,LRRK2,Pink1和Parkin在内的关键PD疾病蛋白可以影响神经活动水平(13-18),进一步支持了神经活动变化也可能有助于疾病病理生理学的观念。健康的SNC多巴胺神经元由于其起搏活动,有效的Ca 2+泵送,无髓髓纤维或髓鞘不良的纤维(19、20)和大轴突轴(21),因此具有巨大的能量需求。这一巨大的能量要求可能解释了其内在脆弱性,包括线粒体损伤,包括复杂的I破坏(8、22、23)以及线粒体动力学的障碍(24)和周转率(25)。据估计,线粒体在SNC DA神经元中消耗的氧的一半致力于支持神经元释放和发射器释放(26)。因此,与疾病相关的应激结合在一起,即使是轻微多动症的代谢影响可能会触发或加速SNC DA神经元的变性。支持该假设,抑制STN的兴奋性输入可保护SNC DA神经元从6- OHDA和MPTP毒性(27,28)。
语言和视觉模型(LLMS/VLMS)通过产生类似人类的文本和理解图像的能力彻底改变了AI领域,但是确保其可靠性至关重要。本文旨在评估LLM(GPT4,GPT-3.5,Llama2和Palm 2)和VLMS(GPT4V和Gemini Pro Vision)通过提示估算其口头上的不确定性的能力。我们提出了新的日本不确定场景(JUS)数据集,旨在通过困难的查询和对象计数测试VLM功能,以及净校准误差(NCE)来测量错误校准的方向。结果表明,LLMS和VLM都有很高的校准误差,并且大多数时候都过高地表明不确定性估计的能力较差。此外,我们为回归任务开发了提示,并且我们表明,在产生平均/标准偏差和95%置信区间时,VLM的校准较差。
全球过度消费是一个正在影响群众的问题,没有变化,会对环境和未来子孙后代产生可怕的后果。这个问题源于每日消耗的资源(例如食品,衣物和电子废物)以急剧的速度从全球不同的公司中抽出,从而导致二氧化碳排放量的增加,从而导致全球变暖。这些废物的来源最终在可能对人类健康有害的地区。像丹麦这样的国家有一个适当的系统来解决此问题(《气候法》)。《气候法》于2008年11月在英国引入;该法案的主要目标是到2050年将温室气体排放量减少80%。因此,本研究旨在评估丹麦的气候法案政策,作为最佳实践的建议工具,以防止其他国家遭受过度消费和全球变暖的后果。
阿尔茨海默病 (AD) 中的神经元功能障碍和认知能力下降可能是由多种病理生理因素引起的。然而,人类的机制证据仍然很少,需要改进的非侵入性技术和综合模型。我们引入了个性化的 AD 计算模型,该模型建立在全脑 Wilson-Cowan 振荡器之上,并结合了来自 132 名 AD 患者的静息态功能 MRI、淀粉样蛋白-β (A β ) 和 tau-PET,以评估毒性蛋白质沉积对神经元活动的直接影响。这种针对特定主题的方法揭示了关键的病理机制相互作用,包括 A β 和 tau 对认知障碍的协同作用以及随着疾病进展而增加的神经元兴奋性。通过基于体素的形态测量,数据得出的神经元兴奋性值可以强烈预测临床相关的 AD 血浆生物标志物浓度 (p-tau217、p-tau231、p-tau181、GFAP) 和灰质萎缩。此外,重建的 EEG 代理量显示了标志性的 AD 电生理学改变(θ 波段活动增强和 alpha 波段减少),这种改变发生在 A β 阳性和边缘系统 tau 参与后。小胶质细胞激活对神经元活动的影响不太明确,这可能是由于神经成像在映射神经保护和有害激活表型方面的局限性。机械脑活动模型可以进一步阐明复杂的神经退行性过程并加速预防/治疗干预。
Nurul Akmal 阿曼苏丹国佐法尔大学艺术与应用科学学院计算机科学系 收稿日期:2023 年 11 月 13 日 接受日期:2024 年 3 月 14 日 发表日期:2024 年 4 月 24 日 摘要 本研究考察了教师、学生和行政人员对 ChatGPT 在阿曼教育环境中的作用的看法。这项研究意义重大,因为它深入了解了人工智能在教育中的应用程度,并为未来计划提供了指导。考察阿曼教育环境中各利益相关者的看法,为热衷于拥抱新技术同时又坚持传统教育价值观的高等教育机构提供了宝贵的信息。该研究利用焦点小组讨论收集了教师、学生和行政人员的数据。研究结果表明,ChatGPT 的关键作用在于完善内容,尤其是对于非英语母语的学生、行政人员和教师而言。行政人员和教师强调了其在起草电子邮件方面的功效,表明人工智能具有改善日常认知任务的潜力。学生们对 ChatGPT 解释复杂学术任务的能力表示赞赏。然而,教师们对过度依赖人工智能和可能丧失学术诚信的担忧浮现,这与之前的文献产生了共鸣。这些发现与阿曼独特的社会文化和教育背景有关。鉴于人工智能在阿曼教育中的新兴性质,该研究提供的见解为未来的研究奠定了基础并指导了政策制定。关键词:人工智能、阿曼教育、教学、学习引用为:Syahrin, S. & Akmal, N. (2024)。探索人工智能前沿:阿曼苏丹国教师、学生和行政人员对人工智能在教育中的作用的看法。阿拉伯世界英语杂志 (AWEJ) ChatGPT 特刊,2024 年 4 月:73-89。 DOI: https://dx.doi.org/10.24093/awej/ChatGPT.4