摘要帕金森氏病(PD)的特征是黑质(SNC)多巴胺(DA)神经元的死亡,但在其死亡之前的病理生理机制仍然未知。PD中DA神经元的活性可能会改变,但我们对活性的慢性变化是否可能导致退化。为了解决这个问题,我们开发了一种化学遗传(Dreadd)小鼠模型,以长期增加DA神经元的活性,并使用离体电生理学证实了这种增加。DA神经元的慢性过度激活导致在光周期期间运动活性的延长,并在黑暗循环期间减少,这与DA释放和昼夜节律干扰的慢性变化一致。我们还观察到了SNC投影的早期优先退化,从而概括了SNC轴突选择性脆弱性的PD标志和腹侧段面积轴突的比较弹性。接下来是中脑DA神经元的最终丧失。连续的DREADD激活导致基线钙水平持续增加,这支持了在神经变性过程中钙增加的重要作用。最后,来自研究中脑DA神经元和纹状体靶标的无多小鼠的空间转录组学,以及与人类患者样品的交叉验证,提供了对多动症诱导的毒性和PD的潜在机制的见解。因此,我们的结果揭示了SNC DA神经元对增加神经活性的优先脆弱性,并支持增加神经活动在PD驱动变性中的潜在作用。引言帕金森氏病(PD),尼格拉(Nigra)pars commanta(SNC)多巴胺(DA)神经元的丧失导致基底神经节中电路动态的严重破坏。多巴胺损失的补偿涉及在电路中存活的SNC神经元和其他下游神经元的活性变化。的确,在大鼠骨纹状体途径的部分病变之后,存活的SNC DA神经元是多动(1),释放额外的多巴胺(2-5),并减少了多巴胺再摄取(2)。DA神经元的巨大丧失(1、6、7),线粒体复合物I活性的完全丧失以及线粒体PD蛋白PINK1(9)的损失也会导致爆发的爆发增加(10,11)。因此,在广泛的损失或压力的情况下,DA神经元易于改变活性,这可能与电路水平的变化有关。例如,灵长类动物模型的证据表明,在PD中,丘脑下核向SNC发送了谷氨酸能投射的核(12)。虽然系统级变化可能是补偿性的,并且部分恢复了多巴胺水平和整体运动功能,但它们也可能带来不利的后果。此外,包括α-突触核蛋白,LRRK2,Pink1和Parkin在内的关键PD疾病蛋白可以影响神经活动水平(13-18),进一步支持了神经活动变化也可能有助于疾病病理生理学的观念。健康的SNC多巴胺神经元由于其起搏活动,有效的Ca 2+泵送,无髓髓纤维或髓鞘不良的纤维(19、20)和大轴突轴(21),因此具有巨大的能量需求。这一巨大的能量要求可能解释了其内在脆弱性,包括线粒体损伤,包括复杂的I破坏(8、22、23)以及线粒体动力学的障碍(24)和周转率(25)。据估计,线粒体在SNC DA神经元中消耗的氧的一半致力于支持神经元释放和发射器释放(26)。因此,与疾病相关的应激结合在一起,即使是轻微多动症的代谢影响可能会触发或加速SNC DA神经元的变性。支持该假设,抑制STN的兴奋性输入可保护SNC DA神经元从6- OHDA和MPTP毒性(27,28)。
主要关键词