超越了ohnishi参数:将解离能与聚合物蚀刻相关联Stanfield Youngwon Lee *,Min Kyung Jang,Jae Yun Ahn,Jae Yun Ahn,Jung Jung June Lee和Jin Hong Park Dupont Electronics&Internalics&Internalics&Industrial,20 Samsung 1-Ro 5gil,Hwaseong-si,Gyeeegi-siea,gyeeeegi-do, *stanfield.lee@dupont.com随着光刻图案的大小继续减少,具有快速蚀刻速率和高蚀刻选择性的功能性子层对于维持良好的长宽比和促进成功的模式转移是必要的。因此,预测聚合物蚀刻速率的方法的研究和开发对于设计聚合物在光刻子层中的成功利用至关重要。从这些方法中,OHNISHI参数通常被称为聚合物在某些蚀刻条件下的易于易于。,尽管O.P.值可以是一个强大的预测工具,在某些单体的实现中发现了实际蚀刻率的差异。试图阐明导致这些变化的因素,计算了一系列具有已知蚀刻速率的聚合物的键解离能。与先前引用的研究结合使用,我们的初始发现概述了采用解离能作为OHNISHI参数的替代方案的优势。关键字:ohnishi参数,蚀刻速率,功能性子公司,债券解离能1。引言随着光刻术继续向较低波长的能源过渡,以满足对较小模式大小的需求[1-3],因此新的材料设计正在不断变化,以满足每一代的需求。然而,尽管每一代人的逝世经常导致不同的子层要求,但某些关键参数仍然坚定不移。其中一种是具有相对更快的蚀刻速率或更高蚀刻性的材料,而蚀刻性的选择性比构成光蛋白天(PR)层的材料。可以提出,随着光刻堆栈的大小不断缩小[4],蚀刻率不再是主要因素。的确,对有机单层的研究[5-10],薄无机子层[11-13],甚至没有有机子层[14]的研究。然而,诸如涂层均匀性,差的模式转移和粘附等问题以及有机抵抗和底层之间的兼容性问题阻碍了这些方法的广泛应用[15,16]。
摘要。在辐射高度重复速率(1 kHz - 1 kHz - 1 mHz)flest(1 kHz - 1 MHz)fomettecond(450 fs)乘以最常用的三种商业聚合物(聚(PVC),聚(PVC),聚乙二醇)(PET)和聚丙烯(PP)的响应据报道,NM(均为1.40 j/cm 2)和1030 nm(1.70 j/cm 2)的NM(1.40 j/cm 2)均报道,获得了有关吸收机制如何影响这些材料的加工效率的研究。 可调节的消融深度和直径是通过在恒定功能和脉冲数量下修改重复速率来完成的。 结果突出了吸收机制,重复速率范围和材料的热特性的作用,以使消融效率受益。 此外,高重复率的使用改善了激光处理,减少了扩展的热效应并增加了消融均匀性。最常用的三种商业聚合物(聚(PVC),聚(PVC),聚乙二醇)(PET)和聚丙烯(PP)的响应据报道,NM(均为1.40 j/cm 2)和1030 nm(1.70 j/cm 2)的NM(1.40 j/cm 2)均报道,获得了有关吸收机制如何影响这些材料的加工效率的研究。可调节的消融深度和直径是通过在恒定功能和脉冲数量下修改重复速率来完成的。结果突出了吸收机制,重复速率范围和材料的热特性的作用,以使消融效率受益。此外,高重复率的使用改善了激光处理,减少了扩展的热效应并增加了消融均匀性。
量子发射器的闪烁统计及其相应的马尔可夫模型在生物样本的高分辨率显微镜以及纳米光电子学和许多其他科学和工程领域中发挥着重要作用。目前用于分析闪烁统计的方法,如全计数统计和维特比算法,在低光子速率下会失效。我们提出了一种评估方案,它消除了对最小光子通量和通常的光子事件分箱的需求,而这限制了测量带宽。我们的方法基于测量记录的高阶光谱,我们在最近引入的量子多光谱方法中对其进行了建模,该方法来自连续量子测量理论。通过这种方法,我们可以确定半导体量子点在比标准实验低 1000 倍的光级下的开启和关闭速率,比使用全计数统计方案实现的低 20 倍。因此,建立了一种非常强大的高带宽方法,用于单光子隐马尔可夫模型的参数学习任务,并可应用于许多科学领域。
自然界中的许多现象由多个基本过程组成。如果我们可以定量地预测各个过程的所有速率常数,我们可以全面预测和理解各种现象。在这里,我们报告说,可以使用多共振热激活的延迟荧光(MR - TADF)定量预测所有相关的速率常数和量子收率,而无需进行实验。MR - TADF是出色的发射器,因为它的发射狭窄,高发光效率和化学稳定性,但它们具有一个缺点:慢速逆向间间交叉(RISC),从而导致效率滚动和降低设备寿命。在这里,我们显示了一种用于定量获得所有速率常数和量子收率的量子化学计算方法。这项研究揭示了一种改善RISC的策略,而不会损害其他重要因素:辐射衰减率常数,光致发光量子产量和发射宽度。我们的方法可以在广泛的研究场中应用,从而对包括激子的时间演变提供了全面的理解。
摘要:CO 2地质存储是减少碳排放和温室效应的重要手段之一,它是地球科学研究的新兴领域。选择注射速率对CO 2存储容量有重要影响,并且受注射时间和施工条件的限制,因此选择速率的选择是一个复杂的优化问题。在本文中,基于动态计划计算的最佳注入站点用于注射模拟,基于碳固存的注入速率优化问题被转化为差异进化问题,并且通过不同的差异方法优化了该问题。在挪威Sleipner项目中的Utsira街区。在此基础上,研究了注射率对存储容量和泄漏的影响,并设计了不同注入率下的数值模拟。因此,它为CO 2地质存储中的注射率选择提供了理论指导。
– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 埃及空间局 (EgSA)/埃及。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
摘要。印度东北地区拥有多种营养和健康促进的当地蔬菜。其中之一是索拉尼姆·阿西奥皮(Solanum aethiopicum l),具有丰富的营养和生物活性化学物质的来源。它具有多种药理益处,并用于土著医学来治疗各种疾病。尽管如此,农作物在短暂的保质期(3-5天)中非常易腐烂,这显着造成了后票的损失。用于延长作物的保质期的技术是冷冻,干燥和制冷的。该作物可以在低温下储存约10-12 o的C.果实在穿孔的聚乙烯袋中的水平最长。重要的材料包括聚乙烯,聚丙烯和聚苯乙烯通常使用,并且可以涂层以提高作物的保质期。农作物在制造诸如泡菜,脱水产品等增值产品等产品方面具有巨大的潜力。然而,由于缺乏意识和市场有限的市场,与作物的研究很少,因此与作物的产生相关的问题并没有得到平等的关注。考虑到农作物具有许多优势,该作物的普及至关重要,但是适应水果的苦味和风味对消费者来说可能具有挑战性。消费者的态度,观点和愿意支付经过特定收获后程序的产品需要进一步调查。超越这些障碍需要适当的培养技术,加工,增值和营销。
抽象背景。免疫疗法是几种癌症的有效“精确医学”治疗方法。胶质母细胞瘤患者中潜在基因组(放射基因组)的成像签名可能是肿瘤宿主免疫设备的术前生物标志物。经过验证的生物标志物在IM Munotherapy临床试验期间有可能对患者进行分层,如果试验有益,则有助于个性化的新辅助治疗。整个基因组测序数据的使用增加,生物信息学和机器学习的进步使得这种速度可见。我们进行了系统的综述,以确定与胶质母细胞瘤的免疫相关放射基因组生物标志物的发育程度和验证程度。方法。使用PubMed,Medline和Embase数据库进行了PRISMA指南进行系统的审查。定性分析是通过合并Quadas 2工具并要求清单进行的。Prospero注册:CRD42022340968。提取的数据不足以进行荟萃分析。结果。九项研究,所有回顾性,都包括在内。从感兴趣的磁共振成像体中提取的生物标志物包括明显的扩散系数值,相对的脑血体积值和图像衍生的特征。这些生物标志物与肿瘤细胞或免疫细胞的基因组标记或患者存活相关。大多数研究对执行指数测试的偏见和适用性问题具有很高的风险。结论。放射基因组生物标志物具有为胶质母细胞瘤的PATETS提供早期治疗选择的潜力。由这些生物标志物分层的靶向免疫疗法具有允许在临床试验中允许不同的新辅助精度治疗方案。但是,没有验证这些生物标志物的前瞻性研究,并且由于研究偏见而限制了解释,而很少有可推广性的证据。
摘要 - 在无人驾驶汽车(UAV)上安装可重构的智能表面(RIS)有望改善传统的地面网络性能。与在无人机上部署被动性RIS的调用方法不同,这项研究探讨了空中活性RI(AARIS)的效率。特别是,研究了AARIS网络的下行链路传输,在此,基站(BS)利用速率拆分多个访问(RSMA)进行有效的干扰管理,并借助AARIS支持AARIS以共同扩大和反射BS的发射信号。考虑到有效RI的非琐碎能源消耗和无人机的能源储能有限,我们提出了一种创新的元素选择策略,以优化主动RIS元素的ON/OFF状态,该元素的ON/OFF状态可以自适应地管理系统的功耗。为此,提出了一个资源管理问题,旨在通过共同优化BS处的发射界限,元素激活,相移,相位移位和Active RIS的放大因子,用户的RSMA共同数据速率以及无聊的无人机的发电率来最大化系统能量效率(EE)。由于无人机和用户移动性的动态性质,深入的增强学习(DRL)算法设计用于资源分配,利用元学习来适应快速时变的系统动力学。根据模拟,整合元学习的系统EE会显着增加36%。此外,用AARIS代替固定的陆地活性RI会导致EE增强26%。
全球:为完美定价,金融市场之间的错位在2024年第一季度继续。看来,由于经济在2023年没有陷入衰退时,人们就永远不会陷入衰退,因此他们永远不会。这是来自美国的源自美国的经济表现(财政政策的终结)和对不利方面的通货膨胀感到惊讶 - 希望软化和完美的通气是有共识的。但是股票市场中的估值是否合理?企业在快速增长的名义环境中的表现相对较好,因为我们认为,随着通货膨胀在明年左右的目标中,通货膨胀将不可避免地淡入目标。,为什么我们在经济体中看到同一件事比美国更具挑战性?在欧元区中,增长是平坦的,经济衰退风险很高;德国正在经济衰退中,但其股票市场在本季度创下了创纪录的纪录。日本正在经济衰退,但其股票市场也处于自1980年代后期泡沫以来未见的创纪录水平。英国离一年前的记录不远,但也处于衰退中。然后有像瑞典这样的较小经济体,具有创纪录的股票市场和衰退。澳大利亚以不同的方式适合这种叙述;但是再次,股票市场上有创纪录的纪录,但人均GDP衰退持续存在。发生了什么事?