John Boddicker ACA 首席执行官,已退休 Jillian Bryant ACJA 董事会 Heather Counts ACA 员工 Ken Culp 博士,III ACA 董事会,主席;主持人 Derek Evans ACA 董事会 Kelsey Evans ACLA 主席;Chiangus Classic 委员会 Jody Foster ACA 董事会,前任主席 Segayle Foster ACA 董事会; ACLA 副主席 Larry Garrett ACA 董事会 Ken Geuns ACA 董事会、前任主席 Andy Higgins ACA 董事会、秘书 John Higgins ACA 董事会、前任主席 Dwight Hossle ACA 董事会、前任主席 Dustin Hurlbut ACA 员工 Glenn Klippenstein ACA 首席执行官、退休 Richard Koonce ACA 员工、退休 Chuck Madaris ACA 董事会、前任官员 Steve Melroe ACA 董事会、前任主席 Mike Paul NSR 首席执行官、退休 Taylor Pinkerton ACJA 董事会 Keith Schrick 意大利纯种马和 Chiangus 育种者 Jason Schrick 意大利纯种马和 Chiangus 育种者 Lyle Sexton ACA 董事会、财务主管 Ty Sexton Chiangus Classic 委员会主席 Rob Sheets 博士 ACA 董事会、前任主席、Chiangus Classic 委员会 Dan Shike 博士 伊利诺伊大学肉牛专家;父系测试协调员 Justin Tracy ACA 董事会副主席 Bob Weaber 博士 KSU 肉牛母牛-小牛专家;ACA 遗传学家 Shea Whaley ACJA 董事会
简介:下一代测序(NGS)和生物信息学工具的快速进步使医生可以比以往任何时候都以更快,更具成本效益和全面的方式获得基因检测结果。大约50%的小儿感官听力损失(SNHL)病例是由于遗传病因,因此医师经常使用靶向测序板,这些测序面板鉴定了与SNHL相关的基因中的变体。这些面板允许尽早检测病原变异,使医生可以为家庭提供预期的指导。分子测试并不总是由于存在不同分类的多基因变异物,包括存在不确定意义的变体(VUS),因此并不总是揭示出明显的病因。这项研究旨在在存在其他多基因变异的情况下对与II型Usher综合征相关的患者进行初步的生物信息学表征。我们还为医生提供了一种解释算法,以检查医学遗传学家的分子结果。方法:审查多基因和/或VUS结果的记录,确定了一些潜在的感兴趣主题。为了本研究的目的,两个ADGRV1化合物杂合子符合包容性标准。测序,数据处理和变体调用(从序列数据中鉴定出变体的过程)是在Invitae(San Francisco CA)上进行的。初步分析遵循美国医学遗传学与分子病理协会(ACMG-AMP)在2015年和2019年概述的建议。本研究利用计算分析,预测数据和人群数据以及Clinvar数据库中的图表审查以及公开可用信息的临床信息。结果:将两个受试者鉴定为基因ADGRV1中变体的化合物杂合子。主题1的变体被预测为有害的,而受试者2的变体被预测为无欺骗。这些结果基于Clinvar,多个计算数据,人群数据库以及临床表现的已知信息。
早在 1972 年,1980 年诺贝尔生理学或医学奖获得者、免疫遗传学家 Jean Dausset 就预见到了预测医学的光明前景,希望它能够通过专注于个性化的病理预防来“改变 21 世纪医疗保健的性质”。鉴于当今基因研究和高通量测序的技术进步,这些进步催生了医疗应用,甚至直接针对消费者的商业产品,本期的特别报道具有及时的意义。它对个体重大风险预测(仅适用于罕见的单基因疾病,如亨廷顿氏病)和常见疾病的统计风险识别进行了重要区分。后者在个案中价值有限。至于对亨廷顿氏病或遗传性乳腺癌等晚发性疾病的症状前检测,国际共识认为,应允许高风险人群根据家族史决定是否接受检测。全基因组测序的发展增加了意外发现的可能性,我们必须继续满足那些不愿意知道的人的愿望。然而,这项权利也必须与“知情权”相平衡。在这一点上,法国法律在处理个人获取自身基因组的能力时似乎仍然过于严格和家长式——授予这种访问权限对个人的危险被高估了。潜在的焦虑似乎并没有影响许多公开基因检测服务的客户。至于基因歧视的威胁,与现有的基于社会阶层、来自“坏”社区或不符合传统审美标准的歧视相比,这只是沧海一粟。最后,讨论必须允许患者协会更多地参与,而患者协会通常不出现在有关该主题的文章中,也不允许机构(伦理委员会等)参与。发布官方建议。
摘要 分子病理学是病理学的重要组成部分,它补充了传统的形态学工具,以便获得正确的综合诊断,并适当评估预后和预测治疗反应,尤其是在癌症方面。人们对欧洲某些地区的分子病理学状况感到担忧,即病理学家在评估癌症体细胞基因组变异方面发挥的核心作用。在一些国家,有人试图让其他实验室医学专家对癌症体细胞变异进行分子分析,尤其是现在新一代测序 (NGS) 已纳入临床实践。在这种情况下,病理学家可能只扮演“组织提供者”的角色,而其他专家可能在分子分析方面发挥主导作用。遗传学家和实验室医学专家拥有对遗传性疾病(包括家族性癌症)中的种系变异进行遗传分析的所有背景和技能。然而,对癌症体细胞变异的解释属于病理学的特定科学领域。病理学家对于保证结果的质量至关重要,原因如下:(1)应在适当的形态学背景下解释已识别的分子改变,因为大多数分子改变都是特定于特定背景的;(2)必须考虑分析前的问题;(3)检查待分析样本中肿瘤细胞的比例至关重要,应监测炎性浸润和坏死的存在;4)病理学家的作用对于选择最合适的方法和控制在综合诊断背景下提供分子结果的周转时间至关重要。显然,医院有可能拥有用于进行序列分析的 NGS 核心设施,这些设施对其他专业(微生物学家、遗传学家)开放,但在这种情况下,病理学家也应该在评估癌症体细胞改变方面发挥主导作用。在本文中,我们强调了在形态学背景下解释肿瘤体细胞分子改变的重要性。在欧洲病理学会的立场文件中,我们强烈支持病理学部门在分析和解释癌症体细胞分子改变过程中发挥核心作用。
基因发现经济上重要的特征在作物基因组学和育种方面仍然是充满挑战的边界。DNA测序技术和遗传分析方法的最新进展为发现许多基因和热点基因组区域铺平了道路。对新型基因组区域或候选基因的检测对于植物繁殖者和遗传学家来说非常有用,可以改善农作物,剖析复杂性状的遗传学,并了解感兴趣的特征基因的生物学机制。定量性状基因座(QTL)映射和基因组广泛的关联研究(GWAS)主导了最近的作物基因发现研究。这些研究正在成为常规活动,以发现重要表型的遗传基础,并导致潜在的等位基因变化,标记性状属性关联以及有利等位基因在目标种质中的频率,以帮助理解作物功能基因组学(Rasheed和Xia 2019)。但是,发现的基因座需要在考虑到繁殖之前需要进一步验证。在大多数GWAS情况下,由于将人口结构与低频因果等位基因混淆的问题可能是模棱两可的,这导致了错误的阴性结果和其他未指定的因素,包括在某些基因座上调用低临床基因型的呼唤(Browning和Yu,Yu,2009)和人口大小(Finnoet al。因此,使用交叉群体的方法进行进一步的验证,其中候选基因座在双生养生中被验证或独立的种质收集(Finnoet al。,2014)。遗传验证(QTL,基因组区域,候选基因,基因表达,标记发育等)是标记辅助和基因组选择的基本步骤之一,以实现其目标。遗传验证检查何时在其他位置或年份生长该材料时,相同的QTL或基因是否往往被显着检测到,以及在不同遗传背景中测试时是否仍然可以显着检测其效果(Sallam等人,2016年)。此外,在不同种群中的多态性DNA标记的验证对于进一步的遗传
aritha Kotze 出生于贝尔维尔,并在当地接受教育。她在斯泰伦博斯大学以优异成绩获得理学学士(1980 年)、理学学士荣誉学位(1982 年)和理学硕士学位(1984 年)。1981 年,她受聘于西开普省政府,担任细胞遗传学家,并于 1990 年获得家族性高胆固醇血症分子遗传学博士学位。1986 年,她在斯泰伦博斯大学医学与健康科学学院学术日上因年轻科学家的最佳演讲而获得 AJ Brink 浮动奖杯。在接下来的十年里,她获得了七项出版奖,包括 1989 年在《南非医学杂志》上发表的最佳文章的 Andries Blignaut 奖章。为了表彰她对患者护理新知识的产生和应用所做的贡献,她于 1999 年获得了校长研究卓越奖。2000 年,她被任命为斯泰伦博斯大学医学与健康科学学院人类遗传学系主任,并于 2001 年晋升为副教授。她希望将研究转化为临床应用,因此在 2002 年与她的三名博士生共同创立了一家分子遗传学公司。在接下来的五年里,她全职在该实验室工作,并在实验室和临床科学家的博士指导下继续她的学术研究。2004 年,她因与家族性高胆固醇血症相关的研究获得南非医学研究委员会 (MRC) 颁发的专利激励奖。这项创新结合了对心血管疾病的独特和共同遗传风险因素的分析,并从 2007 年开始发展成为病理支持的基因检测服务。这涉及由行业创新支持计划资助的 Gknowmix™ 数据集成软件程序的开发以及由南非技术创新机构支持的实习计划。
“ 世界上许多地方的妇女缺乏对人类生活基本功能的支持。”玛莎·努斯鲍姆在其著作《导言:女权主义与国际发展》中指出了这一真实的描述。纵观历史,性别不平等一直存在于生活的许多方面,包括健康和赋权。不幸的是,这种不平等并没有被排除在科学领域之外。人们一直认为女性在各个学科中缺席或只能扮演次要角色是可以接受的自然法则,这种想法歪曲了女性对科学的贡献,并为女性未来的参与设置了障碍。根据联合国教科文组织最近的一份报告,女性仅占全球研究人员的 30%。但是,尽管面临种种障碍,女性仍然做出了重大贡献,她们的发现推动了许多科学领域的进步。在遗传学领域,罗莎琳德·富兰克林就是女性科学成就在不知不觉中受到损害的一个例子。富兰克林是 X 射线晶体学专家;她的数据,尤其是“照片 51”,与詹姆斯·沃森和弗朗西斯·克里克自己的数据一起,对他们在 1953 年发表双螺旋 DNA 结构的发现至关重要。她的贡献在 1968 年沃森死后的回忆录中得到承认。芭芭拉·麦克林托克是 20 世纪美国细胞遗传学家,至今仍是唯一获得诺贝尔生理学或医学奖的女性。麦克林托克将她的工作献给细胞遗传学,并发现了移动基因现象。她的研究最初在 20 世纪 50 年代受到质疑。直到 20 世纪 60 年代末,科学界才意识到麦克林托克发现的重要意义。科学史上充斥着无数类似的故事,讲述这些鼓舞人心的女性,她们经过巨大的奋斗,在各自的领域蓬勃发展并取得突破。我们对非西方世界女性在科学领域的经历和奋斗的了解有限。了解这一杰出少数群体的故事对于扩大对不同文化中性别差异因素的理解至关重要。在本文中,我们试图聚焦一些迷人的非西方女性及其对遗传学领域的重大贡献。
本演示深入探讨 DNA 分析领域,涵盖 DNA 结构、犯罪现场 DNA 收集、家族 DNA 匹配和德克萨斯州有关 DNA 的法律等主题。内容还包括实验室环境中的 DNA 匹配过程信息,包括 DNA 指纹识别、提取、PCR、STR、电泳和电泳图。为了使学习体验更具吸引力,演示在每张幻灯片旁边都加入了有趣的 GIF,并介绍了涉及 DNA 的真实案例研究。**使用 STR 进行 DNA 分析**在此活动中,您将深入了解 DNA 分析以及如何将其应用于解决各种案例。您可能会惊讶于您在课堂上获得的知识如何具有实际应用!图 1 中的 STR 序列由 GATAGATAGATAGATAGATAGATA 表示。然而,由于大重复的复杂性,科学家使用一种简写符号,其中重复单元放在括号中,下标表示其重复的次数。例如,STR 序列将表示为 [GATA]6。 DNA 分析或基因指纹分析涉及分析同一物种内个体之间的 DNA 变异,以确定独特特征。该过程有多种应用,包括法医学、亲子鉴定、历史调查以及识别事故和灾难的受害者。大多数个体的遗传物质几乎相同,但确实存在差异,特别是在基因组的非编码区域。这些变异不太可能影响个体的表型,因此更适合进行 DNA 分析。该过程使用一种称为短串联重复序列 (STR) 的 DNA 变异类别。STR 由在整个基因组的不同位置重复多次的碱基单元组成。每个 STR 都有多个等位基因或变体,由存在的重复单元数或序列长度定义。STR 周围的侧翼区域也很重要,因为它们使遗传学家能够使用聚合酶链反应 (PCR) 扩增分离 STR。DNA 分析基础知识 同一物种中的大多数人,包括人类,都有几乎相同的 DNA 序列。然而,整个基因组的特定位置会发生轻微的变化,从而可以进行个体识别。这些基因差异可用于 DNA 分析,以区分不同个体。该技术在法医学、亲子鉴定、历史调查以及事故或灾难受害者识别方面具有实际应用。
2022 年 11 月 4 日 Kim McBride 博士被任命为 CSM 医学遗传学系主任和 AHS 儿科医学遗传学科长,任命于 2023 年 2 月 1 日生效 阿尔伯塔省卫生服务局 (AHS) 和卡明医学院 (CSM) 很高兴地宣布联合任命 Kim McBride 博士为 CSM 医学遗传学系主任和 AHS 医学遗传学科长。该任命于 2023 年 2 月 1 日生效。 McBride 博士是一名人类遗传学研究员和临床生化遗传学家,目前担任俄亥俄州哥伦布市俄亥俄州立大学儿科全国儿童医院遗传和基因组医学部主任。他还是全国儿童医院阿比盖尔韦克斯纳研究所心血管研究中心的研究员。 McBride 博士拥有萨斯喀彻温大学医学博士学位,并在明尼苏达州罗彻斯特的梅奥诊所完成了儿科住院医师实习。他拥有临床科学家培训计划硕士学位以及德克萨斯州休斯顿贝勒医学院临床遗传学和临床生化遗传学奖学金。McBride 博士擅长罕见病患者的临床护理,并致力于领导转化遗传学,运用连接基础科学和临床科学的技能来影响对儿童罕见和毁灭性疾病的理解、诊断和治疗的变化。McBride 博士在罕见遗传病的合作基础科学和转化研究方面有着成功的历史。他拥有所有试验阶段的临床试验专业知识,特别关注溶酶体贮积症和基因治疗。他所在的由美国国立卫生研究院资助的基础科学实验室一直专注于研究先天性心脏病 [CHD] 的病因及其结果。他的实验室利用基因组测序、诱导性多能干细胞和基因编辑技术发现了几种导致 CHD 的基因。McBride 博士于 2001 年被任命为加拿大皇家医学院 (儿科) 院士,并持有美国医学遗传学委员会临床遗传学和临床生化遗传学委员会认证。请与我们一起祝贺 McBride 博士的新任命。
lltrna 于 2021 年 11 月成立,自称是“世界上第一家 tRNA 平台公司”。通过设计转移 RNA 分子(蛋白质合成的细胞信使),这家初创公司获得了 5000 万美元的初始融资,旨在解决可能引发各种疾病的错误蛋白质生产机制。但 Alltrna 并不是唯一一家追求基于 tRNA 的疗法的公司。ReCode Therapeutics、Shape Therapeutics 和 Tevard Biosciences 都先于它而来;随着 hC Bioscience 的到来,该领域继续扩大,这家初创公司于 2 月底以 2400 万美元的融资从隐身模式中脱颖而出,计划用 tRNA 对抗癌症和罕见疾病。所有这些公司都至少在一定程度上专注于设计 tRNA 以绕过过早停止信号并改为整合所需的氨基酸。这种过早终止密码子的作用就像句子中间放错的句号,会混淆信使 RNA (mRNA) 中编码的信息,约占所有遗传疾病的 11%。因此,从理论上讲,仅一个“抑制” tRNA 就可能治愈数千种不同的罕见遗传疾病,每种疾病都是由相同类型的截断“无意义”突变引起的,这些突变会导致基因表达错误。非营利性囊性纤维化基金会的研究和药物发现战略顾问 William Skach 表示:“如果可以安全地做到这一点,那么它真的为一整类新疗法打开了大门。”Alltrna 的创始 CEO 兼董事 Lovisa Afzelius 补充道:“它释放了一种能力,可以满足那些原本被完全忽视的患者群体的未满足需求。”然而,尽管 tRNA 技术在临床前具有诸多前景,但目前尚不确定该平台是否会胜过小分子“读通”药物,如 Translarna (ataluren),这是一种在欧洲和巴西获批用于治疗无义突变介导的杜氏肌营养不良症的药物。此外,正在开发的基因编辑策略也可能与 tRNA 药物相媲美。“我们还不知道抑制 tRNA 在体内的功效,”阿拉巴马大学伯明翰分校的分子遗传学家 Kim Keeling 指出,他仍在继续寻找具有抑制 tRNA 的化合物