感染后,人乳头瘤病毒 (HPV) 会操纵宿主细胞基因表达,以创造一个有利于有效和持续感染的环境。病毒诱导的宿主细胞转录组变化被认为是导致致癌的原因。在这里,我们通过 RNA 测序表明,致癌 HPV18 附加体在原代人类包皮角质形成细胞 (HFK) 中的复制会驱动宿主转录变化,这些变化在多个 HFK 供体之间是一致的。我们之前已经表明,HPV18 将宿主蛋白 CTCF 募集到病毒附加体中,以控制分化依赖性病毒转录程序。由于 CTCF 是宿主细胞转录的重要调节器,它通过协调表观遗传边界和长距离染色体相互作用,我们假设 HPV18 也可能操纵 CTCF 来促进宿主转录重编程。通过 ChIP-Seq 分析宿主细胞基因组中的 CTCF 结合情况,结果显示,虽然病毒不会改变 CTCF 结合位点的总数,但是有一部分 CTCF 结合位点要么富集要么缺乏 CTCF。许多这些改变的位点聚集在差异表达基因的调控元件内,包括抑制上皮细胞生长和侵袭的肿瘤抑制基因细胞粘附分子 1 (CADM1)。我们发现 HPV18 的建立会导致 CADM1 启动子和上游增强子处的 CTCF 结合降低。在没有 CpG 高甲基化的情况下,CTCF 结合的丧失与 CADM1 的表观遗传抑制同时发生,而包括转录调节因子 ZBTB16 在内的相邻基因则被激活。这些数据表明,在 HPV18 建立后,CADM1 基因座会发生拓扑重排。我们利用 4C-Seq(环状染色体确认捕获测序)测试了这一假设,并表明 HPV18 的建立导致
方法 AUGMENT-101 是一项 I/II 期、开放标签、剂量递增和扩展的 revumenib 研究,在五个国家的 22 个临床地点进行(Clinical-Trials.gov 标识符:NCT04065399)。我们报告了 II 期注册启用部分的结果。招募年龄 ≥ 30 天、患有 R/R KMT2Ar 急性白血病或 AML 和核仁磷蛋白 1 (NPM1) 突变的个人。Revumenib 每 12 小时给药一次,剂量为 163 毫克(如果体重 <40 公斤,则为 95 毫克/米 2),与强效细胞色素 P450 抑制剂一起,28 天为一个周期。主要终点是完全缓解 (CR) 或 CR 伴部分血液学恢复 (CR 1 CRh) 的比例和安全性。在预先指定的中期分析中,对所有接受 KMT2Ar 治疗的患者进行了安全性评估;对集中确认的 KMT2Ar 患者进行了疗效评估。试验的单独 NPM1 队列正在进行中。
伯克利实验室开发了第一版重排经济和财务分析 (REFA) 工具。REFA 可让输电规划人员了解使用传统或先进导线进行重排升级的财务、环境和经济效益。该工具可让电网规划人员和公用事业公司展示重排项目的整个生命周期价值,为资本支出较高的项目提供潜在理由。
肺癌通常转移到淋巴结,大脑,肝脏,骨骼和肺部。肺癌的乳腺转移并不常见。 在先前关于肺癌引起的乳腺转移的报道中,与原发性乳腺癌的分化或其他器官的转移具有挑战性[6-8]。 在恶性乳腺肿瘤中,转移性乳腺肿瘤的发生率很低。 同样,乳外恶性肿瘤的乳房转移很少见,乳腺癌的主要转移部位被认为是恶性黑色素瘤(29.8%),肺癌(16.4%),妇科癌(12.7%)(12.7%)或肠道肿瘤(9.9%)[9.9%] [9] [9]。 以前关于肺癌乳腺转移的大多数报道都是关于单侧发生的孤立转移性肿瘤[10];因此,散落的双侧乳腺转移酶的情况很少见。肺癌的乳腺转移并不常见。在先前关于肺癌引起的乳腺转移的报道中,与原发性乳腺癌的分化或其他器官的转移具有挑战性[6-8]。在恶性乳腺肿瘤中,转移性乳腺肿瘤的发生率很低。同样,乳外恶性肿瘤的乳房转移很少见,乳腺癌的主要转移部位被认为是恶性黑色素瘤(29.8%),肺癌(16.4%),妇科癌(12.7%)(12.7%)或肠道肿瘤(9.9%)[9.9%] [9] [9]。以前关于肺癌乳腺转移的大多数报道都是关于单侧发生的孤立转移性肿瘤[10];因此,散落的双侧乳腺转移酶的情况很少见。
NCI-MATCH 旨在表征靶向疗法对组织学不可知的驱动突变阳性恶性肿瘤的疗效。子方案 F 和 G 旨在评估克唑替尼在具有 ALK 或 ROS1 重排的罕见肿瘤中的作用。在至少接受过一次全身治疗后病情进展的恶性肿瘤患者被纳入 NCI-MATCH 进行分子分析,而具有可操作的 ALK 或 ROS1 重排的患者分别被邀请参与子方案 F 或 G。有五名患者进入 F 组(ALK),四名患者进入 G 组(ROS1)。观察到少数 3 级或 4 级毒性,包括肝功能异常和急性肾损伤。对于子方案 F(ALK),反应率为 50%(90% CI 9.8 – 90.2%),4 名符合条件的患者中有 1 名完全反应。中位 PFS 为 3.8 个月,中位 OS 为 4.3 个月。对于子方案 G(ROS1),响应率为 25%(90% CI 1.3 – 75.1%)。中位 PFS 为 4.3 个月,中位 OS 为 6.2 个月。来自 3 家商业供应商的数据显示,ALK 和 ROS1 重排在非小细胞肺癌和淋巴瘤以外的组织学中的患病率很低(分别为 0.1% 和 0.4%)。我们观察到对克唑替尼的反应符合 ALK 融合的主要终点,尽管患者数量很少。尽管累积人数有限,但一些具有这些致癌融合的患者可以对克唑替尼产生反应,这可能在这种情况下发挥治疗作用。
恢复缺乏减数分裂辅酶的染色体基因座中的减数分裂重组(Schmidt等,2020; R r€Onspies等,2022)。相比之下,多个或“丰富”的重排通常会导致减少减数分裂染色体的分离和非整倍型配子,从而损害了植物的生存能力(Heng,2019年)。许多核型重排可能会导致密切相关的加入之间的生殖屏障,从而导致物种的早期步骤(Lucek等,2023)。这些“丰富”的染色体重排通常由涉及影响一个或多个染色体的几十个断点(甚至数百个)的重排的复杂组合,从而导致结构和/或数值核型变化(Schubert,2024)。在“ Chromoana-Genesis”事件期间出现了多个同时重排,这是由“灾难性”现象引起的,例如DNA复制期间的压力,DNA修复缺陷,暴露于遗传毒性剂(Guo等人,2023年,2023年)或异常的Centromere Centromere行为(目前的审查的重点)。大多数受许多重排影响的生物或细胞可能灭亡。然而,具有可行的新型核型的一小部分可能会持续存在,从而导致基因流势和潜在触发物种(Lucek等,2023)。观察到密切相关的物种在其核型排列中可能会有很大差异,这支持了这一假设。染色体。(2023),在Hoang等人中看到了一些假定的例子。(2022)和Tan等。(2023)。(2024)和Martin等。最近在Lucek等人中回顾了核型变化的核型变化。(2023)在Ferguson等人中看到的植物中有一些最新推定的例子。(2020)。
背景:约 2-7% 的非小细胞肺癌患者发生间变性淋巴瘤激酶 (ALK) 重排事件。值得注意的是,典型的 ALK 可操作重排对酪氨酸激酶抑制剂 (TKI) 治疗敏感。然而,不同类型的 ALK 融合会影响这种治疗方法的临床结果。约 10-40% 的 ALK 融合阳性非小细胞肺癌患者对 ALK-TKI 治疗无反应。因此,准确识别 ALK 重排类型对于选择合适的临床治疗方法非常重要。病例报告:使用 DNA 靶向下一代测序技术,我们在一名肺腺癌患者中发现了一种新的溶质载体家族 8 成员 A1 (SLC8A1)-ALK 融合类型。进一步的逆转录聚合酶链反应和桑格测序证实,在转录水平上,重排为 B 细胞 CLL/淋巴瘤 11A (BCL11A)-ALK 融合。患者对克唑替尼治疗表现出快速而强烈的反应,持续 9 个月。患者在对克唑替尼产生耐药性后,对阿来替尼治疗也反应良好。结论:DNA 靶向下一代测序与 RNA 逆转录聚合酶链反应和测序相结合的策略,加上荧光原位杂交和免疫组织化学,可为正确识别伴侣基因和融合结构提供有效且实用的解决方案,用于诊断 ALK 重排,特别是对于 ALK 融合事件的非规范表达模式。联合方法可能为患者带来更多益处。关键词:肺腺癌、间变性淋巴瘤激酶重排、酪氨酸激酶抑制剂、治疗、病例
图2。为各种结构重排显示了简化的图,模拟的托管矩阵和HG002 / NA24385的示例。每个子图的最左侧图显示了每个bin对的托管计数,矩阵下方的盒子代表基因组箱排序,由矩阵指示。中心托管图显示了指定结构重排的模拟纯合示例,最右边的图显示了HG002 / NA24385中重排的示例,该示例是杂合子或纯合子。反转不是来自HG002。A:无SV; B:杂合插入; C:纯合删除; D:杂合串联复制; E:杂合反转。
新孢子虫主要感染牛,导致牛流产,估计每年对全球经济造成 10 亿美元的损失。然而,对其生物学的研究一直被忽视,因为既定范式认为它与其近亲、广泛研究的人类病原体弓形虫几乎完全相同。通过使用第三代测序技术重新审视基因组序列、组装和注释,我们在此表明,新孢子虫基因组最初是在与弓形虫同源的假设下错误组装的。我们表明这些物种之间发生了重大染色体重排。重要的是,我们表明最初命名为 Chr VIIb 和 VIII 的染色体确实融合了,从而将新孢子虫和弓形虫的核型都减少到 13 条染色体。我们重新注释了新孢子虫基因组,揭示了 500 多个新基因。我们对非光合质体和线粒体基因组进行了测序和注释,并表明尽管顶质体基因组几乎相同,但物种和菌株之间存在高水平的基因碎片化和重组。我们的结果纠正了目前在 N. caninum 和 T. gondii 基因组数据库中广泛分布的组装伪影,更重要的是,突出了线粒体是以前被忽视的变异源,并为改变同源性范式铺平了道路,鼓励重新思考基因组作为这些病原体比较独特生物学的基础。
靶标富集的纳米孔测序和从头组装揭示了 CRISPR-Cas9 在人类细胞中诱导的 1 个复杂的靶基因组重排的共现 2 3 4 5 Keyi Geng 1、Lara G. Merino 1、Linda Wedemann 1、Aniek Martens 1、Małgorzata Sobota 1、6 Yerma P. Sanchez 1、Jonas Nørskov Søndergaard 1、Robert J. White 2、Claudia Kutter 1 * 7 8 1 瑞典卡罗琳斯卡医学院生命科学实验室微生物学、肿瘤和细胞生物学系 10 2 约克大学生物系,英国约克 11 * 通讯作者。电话:+46 (0) 70 4933896。电子邮件:12 claudia.kutter@ki.se 13 14 15 标题:Xdrop-LRS 揭示 CRISPR-Cas9 的靶向效应 16 17 18 关键词 19 意外的 CRISPR-Cas9 编辑、组合基因组复制-倒置-整合、20 基于液滴的靶向富集、长读测序、从头序列组装 21 22 23 摘要 24 CRISPR-Cas9 系统被广泛用于通过双 25 向导 RNA 永久删除基因组区域。CRISPR-Cas9 可能会引起基因组重排,但持续的技术发展使得表征复杂的靶向效应成为可能。我们将创新的基于液滴的靶向富集方法与长读测序相结合,并将其与定制的从头序列组装相结合。这种方法使我们能够在靶基因组位点内以千碱基规模剖析序列内容。我们在此描述了 Cas9 造成的广泛基因组破坏,包括靶区域基因组重复和倒置的等位基因共现,以及外源 DNA 的整合和聚集的染色体间 DNA 片段重排。此外,我们发现这些基因组改变导致功能异常的 DNA 片段,并可能改变细胞增殖。我们的研究结果拓宽了 Cas9 删除系统的结果范围,强调了细致的基因组验证的必要性,并引入了数据驱动的工作流程,从而能够以卓越的分辨率详细剖析靶序列内容。