我们提出了一种非稳态量子态的自适应量子态估计方法,并通过数值模拟和实验研究验证了该方法。自适应量子态估计通过在检测到每个量子时更新测量配置,为估计未知输入量子态提供了一种渐近最优方案。然而,以前的方法只对具有相同量子态(稳态)的量子有效。通过采用固定数量的最近检测结果的似然函数,我们的顺序自适应量子态估计允许估计随时间变化的量子态。数值模拟结果和使用光子的实验演示与理论预测非常吻合。该方法将应用于需要估计动态变化的量子态的各个领域。
承诺量子态意味着什么?在这项工作中,我们提出了一个简单的答案:如果在承诺阶段之后,承诺状态从发送者的角度来看是隐藏的,则对量子消息的承诺是具有约束力的。我们用几个实例来说明这个新定义。我们构建了第一个非交互式简洁量子态承诺,它可以看作是量子消息的抗碰撞散列的类似物。我们还表明,任何经典消息的承诺方案都隐含着隐藏量子态承诺 (QSC)。我们所有的构造都可以基于量子密码假设,这些假设隐含在单向函数中,但可能比单向函数更弱。对量子态的承诺为许多新的加密可能性打开了大门。我们对简洁 QSC 的旗舰应用是 Kilian 简洁论证的量子通信版本,适用于任何具有具有恒定误差和多对数局部性的量子 PCP 的语言。代入 PCP 定理,这可以在比经典要求弱得多的假设下为 NP 提供简洁的论证;此外,如果量子 PCP 猜想成立,这将扩展到 QMA。我们安全性证明的核心是一种用于提取量子信息的新型倒带技术。
承诺量子态意味着什么?在这项工作中,我们提出了一个简单的答案:如果在承诺阶段之后,承诺状态从发送者的角度来看是隐藏的,则对量子消息的承诺是具有约束力的。我们用几个实例来说明这个新定义。我们构建了第一个非交互式简洁量子态承诺,它可以看作是量子消息的抗碰撞散列的类似物。我们还表明,任何经典消息的承诺方案都隐含着隐藏量子态承诺 (QSC)。我们所有的构造都可以基于量子密码假设,这些假设隐含在单向函数中,但可能比单向函数更弱。对量子态的承诺为许多新的加密可能性打开了大门。我们对简洁 QSC 的旗舰应用是 Kilian 简洁论证的量子通信版本,适用于任何具有具有恒定误差和多对数局部性的量子 PCP 的语言。代入 PCP 定理,这可以在比经典要求弱得多的假设下为 NP 提供简洁的论证;此外,如果量子 PCP 猜想成立,这将扩展到 QMA。我们安全性证明的核心是一种用于提取量子信息的新型倒带技术。
我们的目标是理解自然界中可能出现的量子系统的所有可能状态的集合的几何形状。这是一个非常普遍的问题;特别是因为我们并不试图非常精确地定义“状态”或“系统”。事实上,我们甚至不会讨论状态是事物的属性,还是事物准备的属性,还是对事物的信念。然而,我们可以问,如果集合首先要用作状态空间,那么需要对集合施加什么样的限制?在量子力学和经典统计学中都自然出现了一个限制:集合必须是凸集。这个想法是,凸集是一个集合,人们可以形成集合中任何一对点的“混合”。正如我们将看到的,这就是概率的由来(尽管我们也没有试图定义“概率”)。从几何角度来看,两种状态的混合可以定义为表示我们想要混合的状态的两个点之间的直线段上的一个点。我们坚持认为,给定两个属于状态集的点,它们之间的直线段也必须属于该集合。这当然不适用于任何集合。但在我们了解这个想法如何限制状态集之前,我们必须有一个“直线”的定义。一种方法是将凸集视为平坦欧几里得空间 E n 的一种特殊子集。实际上,我们可以用更少的方法来实现。将凸集视为仿射空间的子集就足够了。仿射空间就像向量空间,只是没有假设特殊的原点选择。通过两个点 x 1 和 x 2 的直线定义为点集
[1] S. Abe。关于非广延物理中广义熵的 q 变形理论方面的注释。Phys. Lett.,A 224:326,1997 年。[2] S. Abe 和 AK Rajagopal。非加性条件熵及其对局部现实主义的意义。Physica,A 289:157,2001 年。[3] L. Accardi。非相对论量子力学作为非交换马尔可夫过程。Adv. Math.,20:329,1976 年。[4] A. Ac´ın、A. Andrianov、L. Costa、E. Jan´e、JI Latorre 和 R. Tarrach。三量子比特态的广义 Schmidt 分解和分类。Phys. Rev. Lett. ,85:1560,2000 年。[5] A. Ac´ın、A. Andrianov、E. Jan´e 和 R. Tarrach。三量子比特纯态正则形式。J. Phys.,A 34:6725,2001 年。[6] M. Adelman、JV Corbett 和 C. A Hurst。状态空间的几何形状。Found. Phys.,23:211,1993 年。[7] G. Agarwal。原子相干态表示态多极子与广义相空间分布之间的关系。Phys. Rev.,A 24:2889,1981 年。[8] SJ Akhtarshenas 和 M. A Jafarizadeh。贝尔可分解态的纠缠稳健性。E. Phys. J. ,D 25:293,2003 年。[9] SJ Akhtarshenas 和 MA Jafarizadeh。某些二分系统的最佳 Lewenstein-Sanpera 分解。J. Phys. ,A 37:2965,2004 年。[10] PM Alberti。关于 C ∗ 代数上的转移概率的注记。Lett. Math. Phys. ,7:25,1983 年。[11] PM Alberti 和 A. Uhlmann。状态空间中的耗散运动。Teubner,莱比锡,1981 年。[12] PM Alberti 和 A. Uhlmann。随机性和偏序:双随机映射和酉混合。Reidel,1982 年。[13] PM Alberti 和 A. Uhlmann。关于 w ∗ -代数上内导出正线性形式之间的 Bures 距离和 ∗ -代数转移概率。应用数学学报,60:1,2000 年。[14] S. Albeverio、K. Chen 和 S.-M. Fei。广义约化标准
1 代数结构与应用研究组,阿卜杜勒阿齐兹国王大学科学与艺术学院数学系,拉比格 21911,沙特阿拉伯;abdulnadimkhan@gmail.com 2 代数结构与应用研究组,阿卜杜勒阿齐兹国王大学科学学院数学系,吉达 21589,沙特阿拉伯;analahmadi@kau.edu.sa (ANA);whbasaffar@kau.edu.sa (WB);jwph@sussex.ac.uk (JWPH);hashoaib@kau.edu.sa (HS) 3 弗林德斯大学科学与工程学院,阿德莱德,SA 5001,澳大利亚; david.glynn@flinders.edu.au 4 Dhirubhai Ambani 信息与通信技术研究所,Gandhinagar 382007,古吉拉特邦,印度;mankg@computer.org 5 I2M,(法国国立科学研究院,艾克斯-马赛大学,马赛中央理工学院),163 Avenue de Luminy,13009 马赛,法国 * 通讯地址:arifraza03@gmail.com(MAR);patrick.sole@telecom-paris.fr(PS)
量子态密码学表现出许多令人惊讶和违反直觉的特性。在 2002 年的一篇著作中,Barnum 等人指出,这些特性意味着量子态的数字签名是不可能的 [7]。在这项研究中,我们要问:所有形式的量子数据签名,哪怕是可能很弱的签名,都可以完全排除吗?我们给出了两个结果,对这个基本问题提供了重要的启示。首先,我们证明了量子数据数字签名的不可能性,这扩展了 [7] 的结果。具体而言,我们表明,除了通过测量量子消息然后对结果进行签名之外,再没有其他简单的正确性和安全性要求组合能够得到满足。换句话说,只存在经典签名方案。然后我们得到了一个肯定的结果:只要量子态也使用预期接收者的公钥加密,就可以使用与经典签名相同的安全性保证进行签名。按照经典命名法,我们将此概念称为量子签密。从经典角度看,签密只有在提供优于先加密后签名的性能时才有意义。从量子角度看,它更有趣:它是唯一可用的签名方法。我们为量子签密开发了“与经典一样强”的安全定义,并基于后量子公钥原语给出了安全构造。在此过程中,我们展示了一种结合经典和量子方案的自然混合方法,可用于在包括签密、认证加密和 CCA 安全在内的各种加密设置中将安全的经典方案“升级”为完全量子设置。
Pusey、Barrett 和 Rudolph (PBR) 定理声称量子态不能被视为仅代表系统的信息。该结果基于 Harrigan 和 Spekkens (HS) 提出的本体论模型框架。在本文中,我们表明 HS 框架存在一个基本问题:它隐含地假设的认知结构不遵循量子力学所规定的结构。也就是说,模型的认知状态与量子密度矩阵之间的映射既不保留信息熵的值也不保留信息熵的顺序。因此,混合状态的认知内容没有以有意义的方式映射。问题源于假设认知状态由单个概率测度表征,这本质上是非语境性的假设。鉴于这个基本问题,每个使用 HS 框架的结果,包括 PBR 定理,都应该仔细重新审视。
纠缠是量子力学的定义特征之一,也是许多量子信息协议的基本资源 [1]。许多理论和实验研究都致力于研究一对二能级系统(量子比特)的纠缠。高维(量子比特)系统的二分纠缠研究较少。然而,从根本上讲,更好地理解纠缠量子比特可以澄清量子物理的一些微妙之处。例如,与量子比特相比,量子比特被证明可以增强非经典效应,因为它们允许更强的局部现实主义违反 [2, 3]。此外,从更务实的角度来看,高维量子态比简单量子比特具有更高的信息容量,并允许量子密钥分发协议容忍更高的噪声阈值 [4]。在光子系统中,(纠缠)量子比特被编码在高维(最终是无限维)希尔伯特空间的有限维子空间中。这可以通过使用空间模式(例如轨道角动量 [5, 6, 7])或离散化连续自由度(例如频率 [8, 9] 或时间 [10, 11])来实现。此外,这种最初有限维的状态可以在其动态演化过程中扩展到整个希尔伯特空间。例如,当光子轨道角动量携带状态 [12] 通过自由空间 [13, 14, 15, 16] 或光纤 [17] 传输时,就是这种情况。然而,输出状态通常被投射到