我们开发了一个框架,用于学习量子态的特性,超越了独立同分布 (iid) 输入状态的假设。我们证明,给定任何学习问题(在合理的假设下),为 iid 输入状态设计的算法可以适应处理任何性质的输入状态,尽管代价是训练数据大小(又称样本复杂度)的多项式增加。重要的是,如果所讨论的学习算法只需要非自适应的单拷贝测量,那么样本复杂度的这种多项式增加可以显着改善为多对数。除其他应用外,这使我们能够将经典阴影框架推广到非 iid 设置,同时仅导致样本效率的相对较小的损失。我们利用置换不变性和随机单拷贝测量来推导出一个新的量子德菲内蒂定理,该定理主要解决测量结果统计问题,反过来,在希尔伯特空间维度上具有更有利的扩展性。