6 1。分子胚胎学与遗传学研究所基因组神经病学系7(IMEG),库马托大学,库曼莫托,日本8 2。日本库曼莫托大学药学研究生院。9 3。日本库曼本北部10号医学科学研究生院神经病学系。11 4。日本托托里工程研究生院化学和生物技术系,日本托托里12大学13 14 *应向诺里氏菌Shioda和Yasushi Yabuki发言,16 Norifumi Shioda9 17 Norifumi Shioda9 17基因组神经病学系17日本Kumamoto 860-0811。 19电话:81-96-373-6633 20电子邮件:shioda@kumamoto-u.ac.jp 21 22 Yasushi Yabuki 23基因组神经病学系,分子胚胎学和遗传学研究所,Kumamoto University,24 Kumamoto University,24 Kumamoto University,24 Konjo,2-2-1 Honjo,2-2-1 Honjo,chuo-kumamamamamomoto,86-086-086-086-08。 25电话:81-96-373-6633 26电子邮件:yabukiy@kumamoto-u.ac.jp 27日本托托里工程研究生院化学和生物技术系,日本托托里12大学13 14 *应向诺里氏菌Shioda和Yasushi Yabuki发言,16 Norifumi Shioda9 17 Norifumi Shioda9 17基因组神经病学系17日本Kumamoto 860-0811。19电话:81-96-373-6633 20电子邮件:shioda@kumamoto-u.ac.jp 21 22 Yasushi Yabuki 23基因组神经病学系,分子胚胎学和遗传学研究所,Kumamoto University,24 Kumamoto University,24 Kumamoto University,24 Konjo,2-2-1 Honjo,2-2-1 Honjo,chuo-kumamamamamomoto,86-086-086-086-08。25电话:81-96-373-6633 26电子邮件:yabukiy@kumamoto-u.ac.jp 2725电话:81-96-373-6633 26电子邮件:yabukiy@kumamoto-u.ac.jp 27
摘要:由SARS-CoV-2引起的COVID-19大流行已成为全球威胁。了解潜在机制和开发创新治疗方法极为紧迫。G-四链体(G4)是具有不同生物功能的重要非规范核酸结构。研究了SARS-CoV-2基因组中四个假定的G4形成序列(PQS)。其中一个(RG-1)位于SARS-CoV-2核衣壳磷蛋白(N)的编码序列区,已被证实可在活细胞中形成稳定的RNA G4结构。G4特异性化合物,如PDP(吡啶斯他丁衍生物),可以稳定RG-1 G4并通过抑制其在体内和体外翻译显着降低SARS-CoV-2 N的蛋白水平。该结果首次证明 SARS-CoV-2 中的 PQS 可以在活细胞中形成 G4 结构,并且其生物功能可由 G4 特异性稳定剂调节。这一发现将为开发针对 COVID-19 的新型抗病毒药物提供新思路。
随着人群中新病毒的出现以及现有病毒的快速突变,需要新的抗病毒药靶和化合物。大多数现有的抗病毒药物对少数病毒的蛋白质有活跃。最终,这些蛋白质大多数都会影响病毒核酸的加工,但是直接核酸靶向的代表较少,因为难以选择性地以感兴趣的核酸作用。最近,核酸已被证明可以折叠在经典双螺旋和沃森和Crick碱基对的结构中。在这些非典型结构中,G四链体(G4)引起了人们的兴趣,因为它们的主要生物逻辑作用正在发现。分子已经开发了能够选择性靶向G4的分子,并且由于已经研究了G4S作为几种人类病理(包括病毒感染)的靶标。在这里简要引入了具有抗病毒特性的病毒,G4S和G4结合分子之后,我们对报道的G4结合分子的抗病毒活性底部的机甲NISM发表评论。了解G4-----指导在感染细胞中的作用将有助于设计和开发下一代抗病毒药物。
(!“#$”%&'%()#'*+),“ - +。“#+”)#/ 0“ 1)%$ 2”#$'&345*。+*,3“ ##*5,6)#。) div>- $)$“ 7#.6”%*。
3.与聋哑运动员的特别对话会 2023年聋哑足球世界锦标赛亚军成员冈田拓哉(埼玉县聋哑足球俱乐部、越谷FC)、中井健人(TDFC、LesPros Tokyo)、经理植松隼人 ★秘密嘉宾登场! !
1。ST Microelectronics completes acquisition of Norstel AB, a SiC wafer manufacturer, ST Microelectronics, 2019/12/2: https://www.st.com/content/st_com/ja/about/ media-center/press-item.html/c2930.html 2.ROHM集团Sicrystal和St Microelectronics同意提供碳化硅(SIC)Wafers多年来,ST Microelectronics,2020/1/15:https://newsroom.st.com/ja/ja/ja/media-ia-center/media-center/press-center/press-item/press-item.html/c2936.html,3。3.cree |。ST Microelectronics在意大利建立了新的集成SIC WAFER工厂,ST Microelectronics,2022/10/5:https://newsroom.st.com/ja/ja/media-center/media-center/press-item.htm.html/ c3124.html 5。Stmicro在意大利建立新的SIC WAFER工厂,在欧洲首次,Nikkei Crosstech,2022/10/18:https://xtps://xtech.nikkei.com/atcl/news/news/news/news/news/13938/13938/ 6.Infineon和Cree同意长期供应Sic Wafers,Infineon,2018/3/16:https://www.infineon.com/cmms/cmms/jp/jp/jp/jp/about-infineon/press/press/press/press/press/press/press/press-releases/2018/2018/Wolfspeed builds a new large-scale SiC factory in Germany, production begins in 2017, Nikkei Crosstech, 2023/2/28: https://xtech.nikkei.com/atcl/nxt/news/18/14642/ 8.Infineon收购了硅碳化物专家Siltechtra,Infineon,2018/12/7:https://www.infineon.com/cms/cms/cms/jp/jp/about-infineon/press/press/press/press/press-releases/2018/2018/2018/Infineon通过GT Advanced Technologies,Infineon,2020/11/9:https://wwwww.infineon.com/cms/cms/cms/jp/jp/about-infineon/ press/press/press/press/press/2020/infxx20202011-2011-2011-2011-014.html 10。有关电力半导体的SIC外延晶片:与Infineon Technologies签署的销售和联合开发协议,Showa Denko,2021年5月6日:https://wwwwww.resonac.com/jp/
基因启动子处的 DNA-蛋白质相互作用在基因表达中起着至关重要的作用。人类细胞的启动子富含富含鸟嘌呤的序列,这些序列可以形成四链 G-四链体 (G4) 结构。G4 正在成为基因调控中一类独特的基于结构的调控元件,它们与蛋白质的相互作用对于 G4 的作用至关重要。目前,我们对 G4-蛋白质相互作用的理解主要是基于个案,没有系统信息。在这项工作中,我们使用来自 ENCODE 项目的数据检查了共识 G4 形成区 G4(+) 周围 1,183 种人类 DNA 结合蛋白(包括转录因子、组蛋白及其修饰酶)的空间占有率。我们发现 G4(+)、其近端侧和远端侧是三个主要的蛋白质结合位点。几乎所有蛋白质在这些位点上都富集或耗尽,这可能是由于竞争或位点之间的时空转换,导致不同程度的变化或持久性,在细胞/组织类型内或跨细胞/组织类型。值得注意的是,组蛋白被排除在 G4(+) 的近端之外,它们与 G4(+) 的结合分别通过乙酰化和甲基化打开和关闭。此外,远端优先富集 H3K23me2 和 H3K4me2。我们的实验还揭示了相应的 G4-蛋白质相互作用模式。总之,我们的结果表明 G4 在动态定义和协调基因启动子处的染色质结构和 DNA-蛋白质相互作用以进行转录调控方面发挥着普遍作用,而这项任务不太可能通过基于序列的 DNA 识别来完成。
基因启动子处的 DNA-蛋白质相互作用在基因表达中起着至关重要的作用。人类细胞的启动子富含富含鸟嘌呤的序列,这些序列可以形成四链 G-四链体 (G4) 结构。G4 正在成为基因调控中一类独特的基于结构的调控元件,它们与蛋白质的相互作用对于 G4 的作用至关重要。目前,我们对 G4-蛋白质相互作用的理解主要是基于个案,没有系统信息。在这项工作中,我们使用来自 ENCODE 项目的数据检查了共识 G4 形成区 G4(+) 周围 1,183 种人类 DNA 结合蛋白(包括转录因子、组蛋白及其修饰酶)的空间占有率。我们发现 G4(+)、其近端侧和远端侧是三个主要的蛋白质结合位点。几乎所有蛋白质在这些位点上都富集或耗尽,这可能是由于竞争或位点之间的时空转换,导致不同程度的变化或持久性,在细胞/组织类型内或跨细胞/组织类型。值得注意的是,组蛋白被排除在 G4(+) 的近端之外,它们与 G4(+) 的结合分别通过乙酰化和甲基化打开和关闭。此外,远端优先富集 H3K23me2 和 H3K4me2。我们的实验还揭示了相应的 G4-蛋白质相互作用模式。总之,我们的结果表明 G4 在动态定义和协调基因启动子处的染色质结构和 DNA-蛋白质相互作用以进行转录调控方面发挥着普遍作用,而这项任务不太可能通过基于序列的 DNA 识别来完成。
研究文章 | 细胞/分子 DNA G-四链体是一种调节记忆的转录控制装置 https://doi.org/10.1523/JNEUROSCI.0093-23.2024 收稿日期:2023 年 1 月 17 日 修订日期:2024 年 2 月 14 日 接受日期:2024 年 2 月 20 日 版权所有 © 2024 作者