T3 中的风险监控是一个持续的过程,可同时检查多个层面的风险。在投资组合层面,会不断计算和评估各个风险指标,以符合预定的阈值。系统层面的监控会跟踪所有协议参与者的总体风险指标,确保系统性风险保持在可接受的范围内。市场层面的监控为风险评估提供了背景信息,并有助于在潜在市场压力条件影响投资组合稳定性之前识别它们。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
借助 AI,您可以模拟不同的换货或流失率,并查看对收入的影响。下面是为客户演示准备的真实 AI 商品组合模拟。他们想知道商店商品组合变化(即添加新商品与删除旧的低效 SKU)的盈亏平衡点。
1 弗莱堡大学医学中心骨科和创伤外科系,弗莱堡大学医学院,弗莱堡 79108,德国;sara.uelkuemen@hotmail.de(S.Ü.);pm.obid@gmail.com(PO);gernotmichaellang@gmail.com(GML)2 洛雷托医院脊柱外科系,弗莱堡 79100,德国;frank.hassel@rkk-klinikum.de(FH);alisia.zink@gmail.com(AZ)3 帕拉塞尔苏斯医科大学实验神经再生研究所、脊髓损伤和组织再生中心萨尔茨堡(SCI-TReCS),奥地利 5020 萨尔茨堡; s.couillard-despres@pmu.ac.at 4 海德堡大学医院口腔颌面外科系,69120 海德堡,德国;veronika.shavlokhova@med.uni-heidelberg.de 5 奥地利组织再生集群,1200 维也纳,奥地利 6 医学情报与信息学,慕尼黑工业大学医学院 Rechts der Isar 医学中心,81675 慕尼黑,德国;martin.boeker@tum.de * 通信地址:babak.saravi@jupiter.uni-freiburg.de
摘要 自我调节学习 (SRL) 是一种认知能力,在促进学生有效制定策略、监控和评估自己的学习行为方面具有明显意义。研究表明,缺乏自我调节学习技能会对学生的学业成绩产生负面影响。有效的数据驱动反馈和行动建议被认为对 SRL 至关重要,并显著影响学生的学习和表现。然而,向每个学生提供个性化反馈的任务对教师来说是一个重大挑战。此外,由于大多数课程的学生人数众多,为个性化建议确定适当的学习活动和资源的任务对教师来说也是一个重大挑战。为了应对这些挑战,一些研究已经探讨了基于学习分析的仪表板如何支持学生的自我调节。这些仪表板提供了一些关于学生成功和失败的可视化(作为反馈)。然而,虽然这种反馈可能有益,但它并没有提供有见地的信息或可行的建议来帮助学生提高学业水平。可解释的人工智能 (xAI) 方法已被提出来解释此类反馈并从预测模型中产生见解,重点关注学生在正在进行的课程中需要采取的相关行动以改进。此类智能活动可以作为数据驱动的行为改变建议提供给学生。本论文提供了一种基于 xAI 的方法,可以预测课程表现并计算信息反馈和可操作的建议,以促进学生的自我调节。与以前的研究不同,本论文将预测方法与 xAI 方法相结合,以分析和操纵学生的学习轨迹。目的是通过为该方法提供的预测提供深入的见解和解释,为学生提供详细的、数据驱动的可操作反馈。与单独的预测相比,该技术为学生提供了更实用和有用的知识。所提出的方法以仪表板的形式实施,以支持大学课程中学生的自我调节,并对其进行了评估以确定其对学生学业成绩的影响。结果表明,仪表板显着提高了学生的学习成绩并提高了他们的自我调节学习技能。此外,研究发现,所提出的方法提出的建议对学生的表现产生了积极影响,并帮助他们进行自我调节。
8中国;北京Xicheng区Xicheng区北利希路167号,北京Xicheng区,8中国;北京Xicheng区Xicheng区北利希路167号,北京Xicheng区,
本文基于人工智能驱动的分析模型,为无人机的多学科概念设计框架提供了一个多学科的概念设计框架。这种方法利用了驱动的分析模型,其中包括空气动力学,结构质量和雷达横截面预测,以将定量数据带到初始设计阶段,从而从各种优化的概念设计中选择了最合适的配置。由于设计优化周期,为以后的设计活动提供了更准确的翼,尾部和机身等关键组件的初始尺寸。同时,生成的结构可以通过设计迭代中的反馈循环实现更合适的设计点选择。因此,除了降低设计成本外,这种方法在整个设计过程中还具有很大的时间优势。
或许可以理解为什么有些人对人工智能 (AI) 持怀疑态度。首先,媒体和研究报告经常说明机器将如何接管我们的工作,从而导致许多人目前担任的工作岗位被取代。其次,在许多情况下,AI 仍然是一个“黑匣子”。通常,在机器学习中,我们只能看到输入和输出,但不知道这些输入如何组合以达到结果。换句话说,机器以我们完全无法观察到的方式将输入转化为输出。将黑匣子算法应用于司法等公共生活的各个方面将产生深远的社会和道德影响。机器学习技术的发展正在全速前进。然而,监控和故障排除的方法却落后了。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。