摘要我们提出了一种新的多模式面部图像生成方法,该方法将文本提示和视觉输入(例如语义掩码或涂鸦图)转换为照片真实的面部图像。为此,我们通过使用DM中的多模式特征在预训练的GAN的潜在空间中使用多模式特征来结合一般的对抗网络(GAN)和扩散模型(DMS)的优势。我们提供了一个简单的映射和一个样式调制网络,可将两个模型链接起来,并在特征地图和注意力图中将有意义的表示形式转换为潜在代码。使用gan inversion,估计的潜在代码可用于生成2D或3D感知的面部图像。我们进一步提出了一种多步训练策略,该策略将文本和结构代表反映到生成的图像中。我们提出的网络生成了现实的2D,多视图和风格化的面部图像,这些图像与输入很好。我们通过使用预训练的2D和3D GAN来验证我们的方法,我们的结果表现优于现有方法。我们的项目页面可在https://github.com/1211SH/diffusion-driven_gan-inversion/。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
甘蔗是世界上最重要的糖和能源作物。在甘蔗育种期间,技术是需求,方法是手段。我们知道,种子是甘蔗产业发展的基石。Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses.Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic生物学,结合遥感和深度学习等信息技术。鉴于此,我们从技术和方法的角度专注于甘蔗育种,回顾了主要历史,指出了当前的状态和挑战,并为智能育种前景提供了合理的前景。
3D人姿势估计(3D HPE)任务使用2D图像或视频来预测3D空间中的人类关节坐标。尽管最新的基于深度学习的方法取得了进步,但它们主要忽略了可访问的文本和自然可行的人类知识的能力,而错过了有价值的隐性监督,以指导3D HPE任务。此外,以前的努力经常从整个人体的角度研究这项任务,从而忽略了隐藏在不同身体部位的细粒度指导。为此,我们基于3D HPE的扩散模型(名为FinePose)提出了一个新的细粒及时驱动的DeNoiser。它由三个核心块组成,增强了扩散模型的反向过程:(1)通过耦合辅助辅助文本和可学习的提示以模拟隐式指南的耦合知识,并通过耦合的辅助辅助文本和自然可行的零件知识,可以通过耦合的辅助辅助文本和自然可行的零件知识来构建精细的部分零件感知的提示。(2)Fine-
7月 *的Irina *,‡,,赫尔曼(Herman),丹尼尔·卡森伯(DanielKasenber§ Wei-Jen KO 3,Andrera Huber 1,Bretht Wastshire 1,Gall Elidan,Rabin 2,Roni Robinin 2,Robiviit Engelberg 2,Lydan Hackmon 2,Ravil 2,Rachel棕色1,绿色Chiir§,1,Grand Studina Grand We-Xin Dog 3,Marchal 1,Racsite Van Deman 4,儿童区,Abbhipolo 3,Striopolous 3,Annihe Hale 5,Wais Matatas 2,Ben Gomes 3特征1
aabstr abtract Act ..在这项研究中,开发了一种数据驱动的深度学习模型,以快速准确预测温度演化和金属添加剂制造过程的熔融池尺寸。该研究的重点是通过直接能量沉积制造的M4高速钢材料粉末的批量实验。在非优化过程参数下,许多沉积层(以上30)通过由覆层材料对热史的高灵敏度引起的样品深度产生了巨大的微观结构变化。在先前的研究中通过实验测量验证的批量样本的2D有限元分析(FEA)能够实现定义在不同过程设置下温度场进化的数值数据。训练了馈送前向神经网络(FFNN)方法,以重现由FEA产生的温度场。因此,训练有素的FFNN用于预测初始数据集中未包含的新过程参数集的温度字段历史记录。除了输入能量,节点坐标和时间外,还认为五个相关的层数,激光位置以及从激光到采样点的距离可提高预测准确性。结果表明,FFNN可以很好地预测温度演化,在12秒内精度为99%。
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准