免疫介导的肌张力障碍是由骨髓中周围产生的抗体引起的,该抗体穿过血脑屏障,或者可能是由固定的抗体合成的抗体引起的。抗体靶向神经元的不同成分,包括核内,细胞质成分或突触受体。在临床上,它们可以通过急性发作,缺乏家族病史和对免疫疗法的显着反应来与遗传性肌张力障碍区分开[3]。通常,免疫介导的肌张力障碍倾向于作为肌张力障碍症组合,但是当肌张力障碍是表现特征或形成现象学的主要部分时,现有文献就参与模式而言稀缺。在本文中,我们回顾了不同自身免疫性疾病中肌张力障碍的模式,并在患有可疑自身免疫性疾病的患者的唯一或主导性呈现特征时表现出临床方法。
重症肌无力 (MG) 是一种由神经肌肉接头 (NMJ) 自身抗体引起的慢性致残性自身免疫性疾病,临床特征为眼肌、骨骼肌和延髓肌波动性虚弱和早期疲劳。尽管 MG 通常被认为是一种原型自身免疫性疾病,但它是一种复杂且异质性的疾病,表现出不同的临床表型,这可能是由于与不同的免疫反应性、症状分布、疾病严重程度、发病年龄、胸腺组织病理学和对治疗的反应相关的不同病理生理环境所致。目前基于国际共识指南的 MG 治疗可以有效控制症状,但大多数患者无法达到完全稳定的缓解,需要终生免疫抑制 (IS) 治疗。此外,其中一部分患者对传统 IS 治疗有抵抗力,这凸显了对更具体和量身定制的策略的需求。精准医疗是医学领域的一个新领域,有望大大提高多种疾病(包括自身免疫性疾病)的治疗成功率。在 MG 中,B 细胞活化、抗体再循环和补体系统对 NMJ 的损伤是关键机制,创新生物药物针对这些机制的靶向性已在临床试验中被证明是有效和安全的。从传统 IS 转向基于这些药物的新型精准医疗方法可以前瞻性地显著改善 MG 护理。在本综述中,我们概述了 MG 背后的关键免疫致病过程,并讨论了针对这些过程的新兴生物药物。我们还讨论了未来的研究方向,以满足根据遗传和分子生物标志物对患者进行内型分层的需求,以便在精准医疗工作流程中成功做出临床决策。
细胞外 (e)ATP 是一种强效的促炎分子,由炎症部位的死亡/受损细胞释放,并被膜外核苷酸酶 CD39 和 CD73 降解。在本研究中,我们试图揭示 eATP 降解在自身免疫性糖尿病中的作用。然后,我们评估了可溶性 CD39 (sCD39) 给药在 NOD 小鼠的预防和逆转研究以及机制研究中的效果。我们的数据显示,与糖尿病前期 NOD 小鼠相比,高血糖 NOD 小鼠的 eATP 水平升高。发现 CD39 和 CD73 由 a 细胞和 b 细胞以及不同亚群的 T 细胞表达。重要的是,糖尿病前期 NOD 小鼠的胰腺、胰腺淋巴结和脾脏内显示 CD3 + CD73 + CD39 + 细胞的频率增加。给糖尿病前期 NOD 小鼠注射 sCD39 可降低其 eATP 水平,消除 CD4 + 和 CD8 + 自身反应性 T 细胞的增殖,并增加调节性 T 细胞的频率,同时延缓 1 型糖尿病的发病。值得注意的是,与 sCD39 和抗 CD3 同时给药相比,sCD39 和抗 CD3 在恢复新近高血糖 NOD 小鼠正常血糖方面表现出很强的协同作用
• 加拿大目前提供的所有 COVID-19 疫苗都是安全的。疫苗会教会您的身体产生针对 COVID-19 病毒的抗体。这些抗体将有助于抵抗未来的感染并预防严重疾病。 • 医生和研究人员已经研究了证据。他们一致认为,除非您对任何疫苗成分有非常严重的过敏反应,否则您应该强烈考虑接种 COVID-19 疫苗。这是因为如果您感染 COVID-19,您出现严重症状的可能性更高。 • 接受免疫抑制或免疫调节疗法的人未纳入 COVID-19 疫苗的临床试验。但是,疫苗的作用方式意味着您的免疫系统很有可能学会在某种程度上保护您免受 COVID-19 的侵害。
自 2019 年冠状病毒病 (COVID-19) 大流行爆发以来,我们已经了解了很多有关该疾病的发展、临床体征和症状、诊断、治疗、病程和结果的知识(参考文献 1、2)。COVID-19 的病程包括多个阶段,这也决定了所需的治疗策略(参考文献 1 – 3)。第 1 期是病毒感染早期,伴有发烧、呼吸道或胃肠道症状和淋巴细胞减少。第 2 期是肺部阶段。它分为两个亚期:非缺氧血症第 2a 期和缺氧血症第 2b 期。最后,第 3 期是多系统炎症综合征 (MIS) 的阶段,偶尔伴有细胞因子风暴作为致病特征(参考文献 1 – 3)。值得注意的是,真正的“细胞因子风暴”仅发生在 2% 的患者和 8-11% 的重症患者中(参考文献 4)。COVID-19 的晚期阶段还涉及缓激肽风暴(参考文献 5)、凝血和补体级联的激活(参考文献 6)、内皮炎、血管渗漏和水肿(参考文献 6)、微血栓事件(参考文献 4)和中性粒细胞胞外陷阱 (NET)(参考文献 7)等机制。由于这些抗炎药物在 MIS 期间最有效,因此应通过临床、影像学和实验室标志物来确认(参考文献 1、8-10)。实验室生物标志物,例如 C 反应蛋白、铁蛋白、D-二聚体、心肌肌钙蛋白 (cTn)、NT-proBNP、淋巴细胞减少、中性粒细胞与淋巴细胞比率以及(如果有)循环白细胞介素 6 (IL-6) 水平与 2b-3 期 MIS 以及 COVID-19 的结果有关(参考文献 9 - 11)。作为风湿病学家和免疫学家,我们遇到了许多重要的问题,这些问题与自身免疫以及风湿病和肌肉骨骼疾病 (RMD) 特别相关。COVID-19、自身免疫、全身炎症和 RMD 之间可能存在多种相互作用。(1)COVID-19 可能会增加自身抗体产生和自身免疫的风险(参考文献 12)。 (2) 自身免疫炎症性 RMD 可能会增加对严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 感染的易感性(参考文献 13)。(3)现已清楚,在 COVID-19 的晚期阶段,全身炎症和 MIS 而不是原始病毒感染可能主导临床表现(参考文献 3、8、9、14-16)。(4)因此,成功用于治疗 RMD 的免疫抑制药物,如皮质类固醇、生物制剂或 Janus 激酶 (JAK) 抑制剂,也可用于治疗严重 COVID-19 和全身炎症患者(药物再利用)(参考文献 17-19)。(5)在 COVID-19 期间如何管理自身免疫性 RMD 患者也至关重要(参考文献 20-23)。 (6) RMD 患者接种 SARS-CoV-2 疫苗也是一个基本问题(参考文献 24、25)。在这里,我们将简要讨论与自身免疫、MIS 和 RMD 患者相关的所有这些问题。
自2019年冠状病毒病(Covid-19)大流行以来,我们已经对疾病的发育,临床体征和症状,诊断,治疗,病程和外表现有了很多了解(参考文献1、2)。COVID-19的过程包括多个阶段,这也决定了指定的治疗策略(参考文献1-3)。第1阶段是发烧,呼吸道或胃肠道症状和淋巴细胞减少症的早期病毒感染期。阶段2是肺相。它分为两种替代:非甲状体学期2a和低氧阶段2B。最后,第3阶段是多系统炎症性合成(MIS)的阶段,偶尔伴有细胞因子风暴作为致病性(参考文献1-3)。重要的是要注意,仅2%的患者和8-11%的严重患者发生了真正的“细胞因子风暴”(参考4)。COVID-19的晚期阶段还涉及Bradykinin Storm(参考文献5),激活和补体级联反应(参考6),内皮炎,血管泄漏和水肿(参考6),微实性事件(参考4)和中性粒细胞外陷阱(Net)(参考7)。由于这些抗炎药在MIS期间最有效,因此应通过临床,成像和实验室标记来证实这一点(参考文献1,8-10)。作为风湿病学家和免疫学家,我们遇到了许多与自身免疫性以及风湿性和肌肉骨骼疾病(RMD)特别相关的重要问题。(1)COVID-19可能会增加自身抗体生产和自身免疫性的风险(参考文献Laboratory biomarkers, such as C-reactive protein, ferritin, D-dimer, cardiac troponin (cTn), NT-proBNP, lymphopenia, neutrophil-to-lymphocyte ratio, and, if available, circulating interleukin 6 (IL-6) levels have been associated with MIS in Stages 2b-3 and also with the outcome of COVID-19 (Refs 9 - 11)。COVID-19,自身免疫,全身炎症和RMD之间可能存在多种相互作用。12)。(2)自身免疫性炎症RMD可能会增加敏感性急性呼吸综合征2(SARS-COV-2)感染(参考文献13)。(3)现在很明显,在Covid-19的更高级阶段,系统性炎症和MIS,而不是原始的病毒感染可能占主导地位(参考文献3、8、9、14-16)。(4)由于上述结果,成功用于治疗RMD的免疫抑制药物,例如皮质类固醇,生物剂或Janus激酶(JAK)抑制剂,也可能适用于严重的COVID-19和全身性炎症患者(药物重复使用)(药物重复使用)(参考)17-19-19-19-19-19-19-19。(5)在19009年期间如何管理自身免疫性RMD的患者也至关重要(参考文献20-23)。(6)针对SARS-COV-2的RMD患者的疫苗接种也是一个有趣的问题(参考文献24,25)。在这里,我们将简要讨论与自身免疫,MIS和RMD患者有关的所有这些问题。
1 意大利蒙扎米兰比可卡大学医学和外科系自身免疫性肝病中心胃肠病学分部,2 意大利蒙扎圣赫拉多医院欧洲肝病参考网络 (ERN RARE-LIVER),3 意大利蒙扎米兰比可卡大学医学和外科学院比可卡生物信息学生物统计学和生物成像中心 - B4,4 美国马萨诸塞州牛顿市 Rulex Inc.,5 意大利蒙扎米兰比可卡大学医学和外科系及 Tecnomed 基金会,6 意大利蒙扎圣赫拉多医院放射科,7 意大利米兰罗扎诺 Humanitas 临床和研究中心,8 意大利米兰皮耶韦埃马努埃莱 Humanitas 大学生物医学科学系,9 德国亚琛工业大学医院第三医学系,
1型糖尿病(T1D)是一种自身免疫性疾病,导致胰腺β细胞破坏。coxsackievivirus B3(CVB3)感染和黑色素瘤分化相关蛋白5依赖性(依赖MDA5)抗病毒反应与T1D发育有关。IFIH1中的突变(编码为MDA5)与T1D易感性相关,但是这些突变如何促进T1D尚不清楚。Utilizing nonobese diabetic (NOD) mice lacking Ifih1 expression ( KO ) or containing an in-frame deletion within the ATPase site of the helicase 1 domain of MDA5 (Δ Hel1 ), we tested the hypothesis that partial or complete loss-of-function mutations in MDA5 would delay T1D by impairing proinflammatory pancreatic macrophage and T cell responses.在雌性点头和KO小鼠中开发的自发T1D类似,但在δHEL1小鼠中显着延迟,这可能部分是由于髓样衍生的抑制细胞同时增加。有趣的是,与点头小鼠相比,KO雄性小鼠自发性T1D增加了。虽然点头和KO小鼠产生了CVB3加速的T1D,而δHEL1小鼠则部分是由于I型IFN,胰腺浸润TNF +巨噬细胞,IFN-γ + CD4 + T细胞和perforin + CD8 + T细胞的部分保护。 此外,与野生型MDA5相比,δHEL1 MDA5蛋白减少了ATP水解。 我们的结果表明,MDA5功能受阻会延迟T1D,但MDA5的损失促进了T1D。虽然点头和KO小鼠产生了CVB3加速的T1D,而δHEL1小鼠则部分是由于I型IFN,胰腺浸润TNF +巨噬细胞,IFN-γ + CD4 + T细胞和perforin + CD8 + T细胞的部分保护。此外,与野生型MDA5相比,δHEL1 MDA5蛋白减少了ATP水解。我们的结果表明,MDA5功能受阻会延迟T1D,但MDA5的损失促进了T1D。
1型糖尿病(T1D)是一种自身免疫性疾病,导致胰腺β细胞破坏。coxsackievivirus B3(CVB3)感染和黑色素瘤分化相关蛋白5依赖性(依赖MDA5)抗病毒反应与T1D发育有关。IFIH1中的突变(编码为MDA5)与T1D易感性相关,但是这些突变如何促进T1D尚不清楚。Utilizing nonobese diabetic (NOD) mice lacking Ifih1 expression ( KO ) or containing an in-frame deletion within the ATPase site of the helicase 1 domain of MDA5 (Δ Hel1 ), we tested the hypothesis that partial or complete loss-of-function mutations in MDA5 would delay T1D by impairing proinflammatory pancreatic macrophage and T cell responses.在雌性点头和KO小鼠中开发的自发T1D类似,但在δHEL1小鼠中显着延迟,这可能部分是由于髓样衍生的抑制细胞同时增加。有趣的是,与点头小鼠相比,KO雄性小鼠自发性T1D增加了。虽然点头和KO小鼠产生了CVB3加速的T1D,而δHEL1小鼠则部分是由于I型IFN,胰腺浸润TNF +巨噬细胞,IFN-γ + CD4 + T细胞和perforin + CD8 + T细胞的部分保护。 此外,与野生型MDA5相比,δHEL1 MDA5蛋白减少了ATP水解。 我们的结果表明,MDA5功能受阻会延迟T1D,但MDA5的损失促进了T1D。虽然点头和KO小鼠产生了CVB3加速的T1D,而δHEL1小鼠则部分是由于I型IFN,胰腺浸润TNF +巨噬细胞,IFN-γ + CD4 + T细胞和perforin + CD8 + T细胞的部分保护。此外,与野生型MDA5相比,δHEL1 MDA5蛋白减少了ATP水解。我们的结果表明,MDA5功能受阻会延迟T1D,但MDA5的损失促进了T1D。