电动汽车的充电状态(SOC)对于预测剩余电池水平并安全保护电池免受过度电荷和过度充电条件非常重要。在这方面,已经提出了使用反向传播(BP)的神经网络(NN)算法来准确估计电池的SOC。锂聚合物电池在其估计的SOC与电流,电压和温度之间具有非线性关系。在这项研究中,施加了3.7 V/16 AH的锂聚合物电池。在恒定电流和温度条件下以0.5C的排放速率进行了电荷/放电实验。实验数据用于训练返回传播神经网络(BPNN),用于在充电条件下预测SOC和在排放条件下派遣(DOD)绩效的深度(DOD)。由于实验,发现拟议的BPNN模型的误差为排出DOD中平均绝对误差的0.22%,而在10、50、100和150个周期中,充电SOC中的平均绝对误差的0.19%。因此,确认了设计的BP算法的SOC学习模型的高性能。
摘要 — 量子机器学习仍然是量子计算领域中一个非常活跃的领域。其中许多方法已经将经典方法应用于量子设置,例如 QuantumFlow 等。我们推动这一趋势,并展示了经典卷积神经网络对量子系统的适应性——即 QuCNN。QuCNN 是一个基于参数化的多量子态的神经网络层,计算每个量子滤波状态和每个量子数据状态之间的相似性。使用 QuCNN,可以通过单辅助量子比特量子例程实现反向传播。通过在一小部分 MNIST 图像上应用具有数据状态和滤波状态的卷积层、比较反向传播的梯度并针对理想目标状态训练滤波状态来验证 QuCNN。索引术语 — 量子计算、量子机器学习、卷积神经网络
准确的分子特性预测对于药物发现和计算化学至关重要,促进了有希望的化合物并加速治疗性发育的鉴定。传统的机器学习以高维数据和手动特征工程的速度失败,而现有的深度学习方法可能不会捕获复杂的分子结构,而留下了研究差距。我们引入了深CBN,这是一个新型框架,旨在通过直接从原始数据中捕获复杂的分子表示来增强分子性质预测,从而提高了准确性和效率。我们的方法论结合了卷积神经网络(CNN)和biforter注意机制,同时采用了前向算法和反向传播。该模型分为三个阶段:(1)功能学习,使用CNN从微笑字符串中提取本地特征; (2)注意力完善,通过向前前锋算法增强的Biforter模块捕获全球环境; (3)预测子网调整,通过反向传播进行微调。对基准数据集的评估 - 包括TOX21,BBBP,SIDE,Clintox,Clintox,Bace,HIV和MUV,表明深-CBN达到了近乎完美的ROC-AUC分数,显着超过了最好的State-Art-Art方法。这些发现证明了其在捕获复杂分子模式的有效性,提供了一种强大的工具来加速药物发现过程。
最近的许多研究都集中在生物学上可行的监督学习算法变体上。然而,运动皮层中没有老师来指导运动神经元,大脑中的学习取决于奖励和惩罚。我们展示了一种生物学上可行的强化学习方案,适用于具有任意层数的深度网络。网络通过选择输出层中的单元来选择动作,并使用反馈连接将信用分配给负责此动作的连续较低层中的单元。做出选择后,网络会得到强化,没有老师来纠正错误。我们展示了新的学习方案——注意力门控大脑传播 (BrainProp)——在数学上等同于错误反向传播,每次针对一个输出单元。我们展示了深度全连接、卷积和局部连接网络在经典和硬图像分类基准(MNIST、CIFAR10、CIFAR100 和 Tiny ImageNet)上的成功学习。 BrainProp 的准确度与标准误差反向传播相当,甚至优于最先进的生物启发式学习方案。此外,学习的反复试验性质与有限的额外训练时间有关,因此 BrainProp 的速度要慢 1-3.5 倍。因此,我们的研究结果为如何在大脑中实施深度学习提供了新的见解。
前向-前向学习 (FFL) 算法是最近提出的一种无需占用大量内存的反向传播即可训练神经网络的解决方案。在训练期间,标签会伴随输入数据,将其分类为正输入或负输入。每一层都会独立学习对这些输入的响应。在本研究中,我们通过以下贡献增强了 FFL:1) 我们通过在层之间分离标签和特征转发来优化标签处理,从而提高学习性能。2) 通过修改标签集成,我们增强了推理过程,降低了计算复杂性并提高了性能。3) 我们引入了类似于大脑皮层环路的反馈回路,信息在其中循环并返回到早期的神经元,使各层能够将来自前几层的复杂特征与低级特征相结合,从而提高学习效率。
塑料自适应,非线性复发动力学和多尺度内存是神经网络硬件实现的所需功能,因为它们使它们能够学习,适应和处理与生物学大脑的方式相似。在这项工作中,这些特性发生在光子神经元阵列中。重要的是,这是以紧急方式自主实现的,而无需外部控制器设置权重,也没有明确的全球奖励信号反馈。使用基于简单的逻辑回归的无反向传播培训算法的层次结构,在MNIST任务上实现了98.2%的绩效,这是一项流行的基准测试任务,研究书面数字的分类。塑料节点由硅光子微孔谐振器组成,这些谐振器被带有非挥发记忆的一块相变材料覆盖。系统是紧凑,健壮和直接的,可以通过使用多个波长来扩展。此外,它构成了一个独特的平台来测试和有效地以高处理速度实现生物学上合理的学习方案。
Eikonal方程已成为准确有效地对心脏电活激活进行建模的必不可少的工具。原则上,通过匹配临床记录和核心心电图(ECG)的匹配,可以纯粹的非侵入性方式构建患者特异性心脏生理学模型。尽管如此,拟合程序仍然是一项具有挑战性的任务。本研究介绍了一种新的方法,即测量BP,以解决逆向敌军问题。Geodesic-BP非常适合GPU加速机器学习框架 - 使我们能够优化Eikonal方程的参数以重现给定的ECG。我们表明,即使在存在建模不准确的情况下,Geodesic-BP也可以在合成测试案例中以高精度重建模拟的心脏激活。fur-hoverore,我们将算法应用于双心脑兔模型的公开数据集,并具有令人鼓舞的结果。鉴于未来向个性化医学的转变,Geodesic-BP具有帮助未来功能的心脏模型的功能 - 符合临床时间段落的同时保持最先进的心脏模型的生理准确性。
现代神经界面允许在脑电路中访问多达一百万个神经元的活动。但是,带宽极限通常在更大的空间采样(更多通道或像素)和采样的时间频率之间创造权衡。在这里我们证明,可以通过利用神经元之间的关系来获得神经元时间序列中的时空超分辨率,该神经元嵌入了潜在的低维数量人群动力学中。我们新颖的神经网络训练策略,通过时间(SBTT)进行选择性反向传播,从而从数据中学习了潜在动力学的深层生成模型,在这些数据中,观察到的一组变量在每个时间步骤都会发生变化。由此产生的模型能够通过将观测值与学习的潜在动态相结合来推断缺失样本的活动。我们测试SBTT应用于顺序自动编码器,并证明了电生理和钙成像数据中神经种群动态的有效和更高的表征。在电生理学中,SBTT可以准确推断界面带宽较低的神经元种群动力学,从而为植入的neu-roelectronic Interfaces提供了明显的动力节省的途径。在两光子钙成像的应用中,SBTT准确地发现了神经population活性的高频时间结构,从而大大优于当前的最新技术。最后,我们证明,通过使用有限的高带宽采样对预处理动力学模型,然后使用SBTT将这些模型适应这些模型以获取稀疏采样的数据,可以进一步提高性能。
摘要 - Eikonal方程已成为一种不可或缺的工具,用于对心脏电动激活进行巧妙和有效地建模。原则上,通过匹配临床记录和基于艾科尼尔的心电图(ECG),可以以纯粹的非侵入性方式构建心脏电子生理学的患者特异性模型。否则,拟合过程仍然是一项具有挑战性的任务。本研究介绍了一种新的方法,即测量BP,以解决逆向艾科尼尔问题。Geodesic-BP非常适合GPU加速机器学习框架,从而使我们能够优化Eikonal方程的参数以复制给定的ECG。我们表明,即使在存在建模不准确的情况下,Geodesic-BP也可以在合成测试案例中以高精度重建模拟的心脏激活。此外,我们将al-gorithm应用于双室兔模型的公开数据集,并具有令人鼓舞的结果。鉴于未来向个性化医学的转变,Geodesic-BP具有帮助心脏模型的未来功能化,同时保持临床时间的限制,同时保持先进心脏模型的生理准确性。
尽管在有效载荷和航程方面存在限制,货运无人机在应急物流和远程配送方面仍具有广阔的应用前景。在本研究中,我们通过开发一种高容量 3.84 kW 电池来应对这些挑战,该电池专为在苛刻地形中运行的 50 公斤有效载荷货运无人机而设计。我们专注于应急货物的运输,研究无人机设计的关键方面和电池组开发的细节,包括电池选择、内部配置以及用于电池平衡、充电/放电和高级电池管理的关键电路。一项关键创新是集成反向传播人工神经网络 (BPANN) 算法来预测放电深度 (DoD) 和充电状态 (SoC)。研究结果表明,BPANN 提供高度准确的预测,DoD 的误差百分比低至 0.12%,SoC 的误差百分比低至 0.02%,确保电池运行优化和安全。进行了全面的现场测试,以评估所提出的电池平衡策略、强大的电池管理系统 (BMS) 和 BPANN 实施的有效性。我们研究了无人机在 DoD、SoC 和使用设计的电池组的整体现场操作方面的性能,并证明了其在实际应用中的可行性和潜力。