摘要 — 在本文中,我们通过区分新型冠状病毒疾病 (COVID-19) 或其他疾病引起的肺部不透明样本与正常病例,开发了一个从胸部 X 光片图像中识别肺部疾病的框架。我们执行图像处理任务、分割并训练定制的卷积神经网络 (CNN),在分类准确性方面获得合理的性能。为了解决这种复杂分类模型的黑箱性质,这种性质成为应用此类基于人工智能 (AI) 的方法自动化医疗决策的主要障碍,引起了临床医生的怀疑,我们解决了使用基于分层相关性传播 (LRP) 的方法定量解释我们采用的方法的性能的需要。我们还使用了基于像素翻转的稳健性能指标来评估我们采用的 LRP 方法的可解释性,并将其性能与其他可解释方法进行比较,例如局部可解释模型不可知解释 (LIME)、引导反向传播 (GB) 和深度泰勒分解 (DTD)。索引术语 — 深度学习、可解释 AI、分层相关性传播、LIME、深度泰勒分解、引导反向传播、医学诊断、胸部 X 光检查、COVID-19。
大脑和人工神经网络学习的背景知识。然后,我们研究神经硬件施加的实现约束以及反向传播算法违反这些约束的原因。为了应对这些约束,人们设计了几种学习算法,例如反馈对齐、目标传播和平衡传播,每种算法都试图克服反向传播遇到的一些困难。本综述的主要内容是对这些方法的分析,包括它们的成功和失败。其中一些成功案例相当令人惊讶,表明反向传播类算法对大脑来说并不像以前认为的那样不可行。正是出于这个原因,我们认为大脑的真正功能在本质上可能与反向传播相似。
2 理论背景 6 2.1 医学领域的中风 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... . ... 16 2.6 训练神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.3 损失函数 . ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 25
在回流过程中,放置元件的电路板上会形成焊点,因此回流炉腔内的温度设置对 PCB 的质量至关重要。不适当的温度曲线会导致各种缺陷,如裂纹、桥接、分层等。焊膏制造商通常会提供理想的温度曲线(即目标温度曲线),而 PCB 制造商则会尝试通过微调炉的配方来满足给定的温度曲线。传统方法是调整配方,使用热测量设备收集热数据。它调整温度曲线依赖于反复试验的方法,这需要花费大量时间和精力。本文提出了 (1) 配方初始化方法,用于确定用于收集训练数据的初始配方;(2) 基于阶段(升温、浸泡和回流)的输入数据分割方法,用于数据预处理;(3) 反向传播神经网络 (BPNN) 模型,用于预测所需的区域温度以减少实际处理曲线与目标曲线之间的差距;(4) 混合整数线性规划 (MILP) 算法,用于生成最佳配方以最小化温度设置。本文旨在通过一次实验实现所需空气温度的非接触式预测。MILP 优化模型利用了从预测结果中获得的上限和下限约束。该模型已通过不同的初始配方和不同的目标曲线进行了交叉验证。结果,在开始实验的 10 分钟内,生成的最佳配方将与目标曲线的匹配度提高了 4.2%,达到 99%,同时降低了 23% 的能源成本。关键词:回流热配方优化、机器学习、基于阶段的分割、反向传播神经网络(BPNN)、混合整数线性规划(MILP)。
反向传播被认为是训练人工神经网络最有利的算法。然而,由于其学习机制与人脑相矛盾,反向传播因其生物学上的不合理性而受到批评。尽管反向传播在各种机器学习应用中取得了超人的表现,但它在特定任务中的表现往往有限。我们将此类任务统称为机器挑战任务 (MCT),旨在研究增强 MCT 机器学习的方法。具体来说,我们从一个自然的问题开始:模仿人脑的学习机制能否提高 MCT 的性能?我们假设,复制人脑的学习机制对于机器智能难以完成的任务是有效的。使用预测编码(一种比反向传播更具生物学合理性的学习算法)进行了多个对应于特定类型的 MCT 的实验,其中机器智能有提高性能的空间。本研究将增量学习、长尾和小样本识别视为代表性的 MCT。通过大量实验,我们检验了预测编码的有效性,它对 MCT 的表现远优于反向传播训练的网络。我们证明了基于预测编码的增量学习可以减轻灾难性遗忘的影响。接下来,基于预测编码的学习可以减轻长尾识别中的分类偏差。最后,我们验证了用预测编码训练的网络可以用少量样本正确预测相应的目标。我们通过将预测编码网络的特性与人脑的特性进行比较并讨论预测编码网络在一般机器学习中的潜力来分析实验结果。
概率建模是我们对世界提出推论的最基本方式之一。本文率先将深度学习与可扩展的概率推断(通过所谓的重新聚集技巧摊销的平均场变异推断),从而产生了变异自动编码器(VAE)。这项工作的持久价值植根于其优雅。用于开发VAE的原则加深了我们对深度学习与概率建模之间相互作用的理解,并引发了许多随后的有趣概率模型和编码方法的发展。Rezende等人的并发工作。还提出了在ICML 2014上发表的题为“随机反向传播和深层生成模型中的近似推断”的论文中。
本模块将向学生介绍机器学习和人工智能中最广泛使用的一些方法背后的理论基础。我们将深入研究三种学习范式的数学基础,每种范式都包含一种旗舰方法:(i)监督学习的线性回归,(ii)无监督学习的主成分分析,以及(iii)深度学习的反向传播。此外,我们将研究扩散模型背后的数学原理,扩散模型是目前最值得注意的从文本生成图像的生成式人工智能方法之一。除了这些技术的理论方面,学生还将通过讲座中展示的实际示例接触机器学习算法的实际实施。将提供有关所研究方法的编码(使用 Python)的在线教程。
在 Bloch 球面图中,我们可以根据恒等矩阵和泡利矩阵来展开单量子比特密度算子的系数。通过张量积推广到 n 个量子比特,密度算子可以用长度为 4 n 的实向量表示,在概念上类似于状态向量。在这里,我们研究这种方法以进行量子电路模拟,包括噪声处理。张量结构可实现计算高效的算法,用于应用电路门和执行少量子比特量子操作。针对变分电路优化,我们研究通过量子电路的“反向传播”和基于这种表示的梯度计算,并将我们的分析推广到林德布拉德方程,以建模密度算子的(非幺正)时间演化。