为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
深度学习和神经网络:多层感知器:多层感知器体系结构,什么是隐藏的层?每一层中有多少层和多少个节点?激活函数:线性传输函数,重型阶跃功能(二进制分类器),sigmoid/logistic函数,软马克斯函数,双曲线切线函数(TANH),整流的线性单元,泄漏的relu。前馈过程:前馈计算,特征学习。错误函数:错误函数是什么?,为什么我们需要一个错误函数?错误总是正面的,均为正方形错误。跨凝性,关于错误和权重优化算法的最终说明:什么是优化?,批处理梯度下降,随机梯度下降,微型批次梯度下降,梯度下降点击。反向传播:什么是反向传播?,反向传播外卖。
- Introduction: applications, computational models for vision, perception and prior knowledge, levels of vision, how humans see - Pixels and filters: digital cameras, image representations, noise, filters, edge detection - Regions of images and segmentation: segmentation, perceptual grouping, Gestalt theory, segmentation approaches, image compression - Feature detection: RANSAC, Hough transform, Harris corner detector - Object recognition: challenges, template matching, histograms, machine learning - Convolutional neural networks: neural networks, loss functions and optimization, backpropagation, convolutions and pooling, hyperparameters, AutoML, efficient training, selected architectures - Image sequence processing: motion, tracking image sequences, Kalman filter, correspondence problem, optical flow
摘要:光子综合电路正在成为一个有前途的平台,用于加速深度学习中的矩阵乘法,利用光的固有平行性质。尽管已经提出并证明了各种方案是为了实现这种光子矩阵加速器,但由于在光子芯片上直接芯片后反向传播的困难,使用光子加速器对人工神经网络的原位培训仍然具有挑战性。在这项工作中,我们提出了一个具有对称结构的硅微孔谐振器(MRR)光学横杆阵列,该横梁允许简单的芯片反向传播,有可能使深度学习的推理和训练阶段加速。我们在Si-On-On-On-On-On-On-On-On-On-On平台上演示了一个4×4电路,并使用它来执行简单神经网络的推理任务,用于对虹膜花进行分类,从而达到了93.3%的分类精度。随后,我们使用模拟的芯片反向传播训练神经网络,并在训练后同一推理任务中达到91.1%的精度。此外,我们使用9×9 MRR横梁阵列模拟了卷积神经网络(CNN)进行手写数字识别,以执行卷积操作。这项工作有助于实现紧凑和节能的光子加速器进行深度学习。
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
类似网络 - 前馈:• 在此步骤中,NN 根据当前权重 𝒘 和输入预测 Ŷ。• 计算误差 ( 𝒥 ( 𝑤 )) = (Y- Ŷ) 范数 - 反向传播:
对随机和不规则抽样的时间序列进行建模是在广泛的应用中发现的一个具有挑战性的问题,尤其是在医学中。神经随机微分方程(神经SDE)是针对此问题的有吸引力的建模技术,它可以将SDE的漂移和扩散项与神经网络相关。但是,当前用于训练神经SDE的算法需要通过SDE动力学进行反向传播,从而极大地限制了它们的可扩展性和稳定性。为了解决这个问题,我们提出了轨迹流匹配(TFM),该轨迹以无模拟方式训练神经SDE,通过动力学绕过反向传播。TFM利用从生成建模到模型时间序列的流量匹配技术。在这项工作中,我们首先为TFM学习时间序列数据建立必要条件。接下来,我们提出了一个改善训练稳定性的重新聚集技巧。最后,我们将TFM适应了临床时间序列设置,从绝对性能和不确定性预测方面,在四个临床时间序列数据集上的性能提高了,这是在这种情况下的关键参数。