癌细胞以两步的方式将成纤维细胞用于癌症相关的成纤维细胞(CAF)。首先,癌细胞分泌外泌体将静态成纤维细胞编程为活化的CAF。第二,癌细胞通过激活信号转导途径维持CAF表型。我们合理地认为,抑制这一两步过程可以将CAF标准化为静止的成纤维细胞并增强免疫疗法的功效。我们表明,针对癌细胞的纳米型纳米脂质体抑制外泌体生物发生的顺序步骤,并从肺癌细胞中释放,阻止了肺成纤维细胞分化为CAFS。并行,我们证明了CAF为靶向的纳米溶剂,它们阻止成纤维细胞生长因子受体(FGFR)中的两个不同节点 - WNT/β-蛋白-CATENIN信号传导路径 - 可以将CAF逆转为quiescent的成纤维细胞。两种纳米型体的共同给药可显着改善细胞毒性T细胞的浸润,并增强αPD-L1在免疫能力肺癌的抗肿瘤疗效。同时阻止了肿瘤外泌体介导的成纤维细胞的激活和FGFR-WNT/β-catenin信号传导构成了增强免疫疗法的有希望的方法。
摘要胰腺癌的肿瘤微环境(TME)是高度免疫抑制的。我们最近开发了一种转化的生长因子(TGF)β的免疫调节疫苗,该疫苗通过靶向TME中的免疫抑制和脱发,在胰腺癌的鼠模型中控制肿瘤的生长。我们发现,用TGFβ疫苗的治疗不仅降低了肿瘤中M2样肿瘤相关的巨噬细胞(TAM)和与癌症相关的成纤维细胞(CAF)的百分比,而且还降低了偏振CAF的偏光CAF,而且远离肌纤维纤维细胞样的表型。然而,TGFβ疫苗在TAM和CAF表型上的免疫调节特性是否是TGFβ特异性T细胞对这些亚群的识别和随后靶向的直接结果,还是TME内诱导的整体调节的间接结果。通过ELISPOT和流式细胞仪评估TGFβ特异性T细胞对M2巨噬细胞和成纤维细胞的识别。通过用肿瘤条件的培养基培养M2巨噬细胞或成纤维细胞,评估了TGFβ疫苗对这些细胞子集的间接和直接影响,或分别用从用TGFβ疫苗或对照疫苗的小鼠脾脏中分离出的T细胞。通过流式细胞仪和生物质量多重系统(Luminex)评估表型的变化。我们发现由TGFβ疫苗诱导的TGFβ特异性T细胞可以识别M2巨噬细胞和成纤维细胞。TAMS倾向于具有促进肿瘤功能,具有免疫抑制表型,并且与胰腺癌具有M2样表型时的总体生存率降低有关。此外,我们证明了M2巨噬细胞和CAF的表型可以由TGFβ特异性T细胞直接调节TGFβ疫苗诱导的TGFβ特异性T细胞,以及由于TME内疫苗的免疫 - 调节作用而间接调节。此外,肌成纤维细胞类似CAF会产生僵硬的细胞外基质,从而限制T细胞浸润,阻碍免疫疗法在去肿瘤肿瘤中的有效性,例如胰腺导管腺癌。通过用TGFβ的TAM和CAF靶向基于TGFβ的免疫调节疫苗,可以减少胰腺肿瘤中的免疫抑制和免疫排除。
三阴性乳腺癌 (TNBC) 预后不良,主要是因为它们对化疗有耐药性。已知这种耐药性与 BCL-2 家族蛋白(即 BCL-xL、MCL-1 和 BCL-2)中某些抗凋亡成员的表达升高有关。这些蛋白通过结合和隔离抑制促凋亡蛋白活化来调节细胞死亡,并且可以被 BH3 模拟物选择性拮抗。然而,BCL-xL、MCL-1 和 BCL-2 对 TNBC 细胞对化疗敏感性的个体影响,以及它们受癌症相关成纤维细胞 (CAFs) 的调节,癌症相关成纤维细胞是肿瘤基质的主要成分,也是治疗耐药性的关键因素,这仍有待阐明。使用基因编辑或 BH3 模拟物抑制 TNBC 细胞系 MDA-MB-231 中的抗凋亡 BCL-2 家族蛋白,我们发现 BCL-xL 和 MCL-1 通过补偿机制促进癌细胞存活。该细胞系对化疗的敏感性有限,与 TNBC 患者观察到的临床耐药性一致。我们阐明了 BCL-xL 在治疗反应中起着关键作用,因为它的消耗或药理抑制提高了化疗效果。此外,BCL-xL 表达与患者来源的肿瘤中的化疗耐药性有关,其中其药理抑制增强了体外对化疗的反应。在癌细胞和 CAF 的共培养模型中,我们观察到即使在 BCL-xL 表达降低使癌细胞更易受化疗影响的情况下,与 CAF 接触的癌细胞也会对化疗表现出降低的敏感性。因此,CAF 在乳腺癌细胞中发挥着显著的促存活作用,即使在通过联合化疗和缺乏主要化学抗性因素 BCL-xL 而极易导致细胞死亡的环境中也是如此。
抽象治疗抗性是乳腺癌中的一个已知问题,并且与多种机制有关。肿瘤微环境在癌症发育和抗药性机制中的作用越来越多地了解。肿瘤 - 质膜是肿瘤微环境的主要组成部分。基质细胞(如癌症相关的成纤维细胞(CAF))被认为通过产生几种分泌因子(如细胞因子和趋化因子)来促进化学疗法的耐药性。CAF会影响疾病进展;肿瘤 - 肿瘤量高的原发性肿瘤患者的预后明显较差。因此,CAFS抵抗机制的作用使它们成为抗癌治疗中的有前途的目标。概述了靶向乳腺癌基质策略的最新进展,并讨论了有关这些基质靶标的当前文献。CAF特异性蛋白以及参与肿瘤 - 质膜相互作用的分泌分子为基质特异性治疗提供了可能。基质特异性疗法的发展仍处于起步阶段,可用文献受到限制。在个性化治疗的范围内,基于肿瘤质膜的生物标志物具有未来通过图像引导手术(IGS)和PET扫描来改善治疗的潜力。
肿瘤微环境(TME)通过各种机制在驱动肿瘤进展,转移和治疗性抗性方面起关键作用。值得注意的是,TME通过调节肿瘤细胞中的免疫监视来影响对治疗的反应。成纤维细胞可以在耐药性中发挥重要作用。与对各种治疗方法的抗性有关。CAF可以通过多种机制(包括细胞外基质重塑,免疫调节,血管生成和旁分泌信号传导)有助于治疗的耐药性。了解成纤维细胞与癌细胞之间的复杂相互作用对于制定更有效的治疗策略和克服癌症治疗中的抗药性至关重要。
肿瘤不仅由恶性细胞组成,还由基质细胞组成,其中包括血管细胞、炎症细胞和活化成纤维细胞,在具有强烈促纤维化反应的肿瘤中,基质细胞可占总肿瘤体积的 90% 以上。已知基质细胞亚群(称为癌相关成纤维细胞 (CAF))参与肿瘤的生长、迁移和进展。CAF 可能由多种细胞发育而成,例如局部成纤维细胞、循环成纤维细胞、脂肪细胞、骨髓衍生干细胞、血管内皮细胞,甚至通过内皮-间质转化由癌细胞发育而成 ( 1,2 )。这种来源的异质性导致具有不同功能的异质蛋白质组,也是观察到 CAF 没有唯一的单一标记的生物学背景 ( 3,4 )。最知名的标志物是平滑肌肌动蛋白、血小板衍生的生长因子 b 和成纤维细胞活化蛋白 (FAP) (1)。Kilvaer 等人在对非小细胞肺癌患者的免疫组织化学分析中发现,成纤维细胞和基质标志物血小板衍生的生长因子 a、血小板衍生的生长因子 b、FAP-1 和波形蛋白仅表现出弱相关性;平滑肌肌动蛋白与任何其他标志物均不相关。因此,由于 CAF 来源的异质性,表型不同的亚群的存在可能有所不同 (3)。FAP 在许多肿瘤实体的基质中过度表达,可能对成像和治疗有用。此外,FAP 是一种膜结合酶,具有二肽基肽酶和内肽酶活性,已知在胚胎发生期间的正常发育过程和组织重塑中发挥作用( 2 )。它在成人正常组织中没有明显表达。在伤口愈合、炎症(如关节炎、动脉粥样硬化斑块、纤维化)以及心肌梗死后的缺血性心脏组织和超过 90% 的上皮癌中,FAP 均有高表达( 1,2,5 )。
背景:识别预测免疫疗法功效的生物标志物并发现联合疗法的新靶标是改善膀胱癌(BLCA)患者预后的关键要素。方法:首先,我们使用来自多个公共数据库的数据探索了正常和Pan-Cancer组织中TBX3的表达模式以及TBX3与免疫微环境之间的相关性。然后,我们组合了各种技术,包括大量RNA测序,单细胞RNA测序,高通量细胞因子阵列,功能实验,Procartaplex多重免疫测定和组织全景组织量化测定,以证明TBX3将Immunosupsporcement tamorsument(bla)塑造为bla s inrosement(bla)。结果:我们将TBX3确定为与BLCA中的免疫抑制微环境相关的关键因素。我们发现TBX3主要在恶性细胞中表达,其中TBX3高肿瘤细胞增加了TGFβ1的分泌,从而促进了与癌症相关的成纤维细胞(CAF)浸润,从而形成了一种免疫抗抑制性的微节流。我们进一步证明,TBX3通过与TGFβ1启动子结合来增强TGFβ1的表达,并阻止TGFβ1抵消TBX3的免疫抑制作用。此外,TBX3通过降低GZMB + CD8 + T细胞的比例来降低CD8 + T细胞的杀菌效率,并敲击TBX3与抗PD-1处理相结合的TBX3增加了CD8 + T细胞的浸润增加了VIVO中的CD8 + T细胞浸润和降低CAF。最后,我们发现TBX3预测了现实世界中免疫疗法队列和多个公共队列中的免疫疗法功效。我们还验证了TBX3 +恶性细胞与CD8 + T细胞之间的反比关系以及组织微阵列中与CAF的正相关关系。结论:总而言之,TBX3通过诱导免疫抑制微环境促进BLCA的进展和免疫疗法抗性,而靶向TBX3可以增强BLCA免疫疗法的功效。
摘要 背景 肿瘤微环境 (TME) 中的癌相关成纤维细胞 (CAF) 导致自然杀伤 (NK) 细胞功能受损,而自然杀伤 (NK) 细胞已成为一种有前途的治疗方式。TME 内的 CAF 和 NK 细胞之间的相互作用对免疫反应具有主要的抑制作用,表明 CAF 靶向疗法是有效 NK 介导的癌症杀伤的潜在靶点。 方法 为了克服 CAF 诱导的 NK 功能障碍,我们选择了抗纤维化药物尼达尼布进行协同治疗。为了评估协同治疗效果,我们建立了体外 3D Capan2/患者来源的 CAF 球体模型或体内混合 Capan2/CAF 肿瘤异种移植模型。通过体外实验揭示了 NK 介导的与尼达尼布协同治疗联合的分子机制。随后评估了体内治疗组合功效。此外,通过免疫组织化学方法测量患者来源的肿瘤切片中靶蛋白的表达评分。结果尼达尼布阻断了血小板衍生的生长因子受体 β (PDGFR β ) 信号通路并减少了 CAF 的激活和生长,从而显著降低了 CAF 分泌的 IL-6。此外,在 CAF/肿瘤球体或异种移植模型中,尼达尼布的联合给药提高了间皮素 (MSLN) 靶向嵌合抗原受体-NK 介导的肿瘤杀伤能力。协同组合导致体内强烈的 NK 浸润。尼达尼布单独使用没有效果,而阻断 IL-6 反式信号传导可改善 NK 细胞的功能。MSLN 表达和 PDGFR β + -CAF 群体面积(潜在的预后/治疗标志物)的组合与较差的临床结果相关。结论我们针对含有 PDGFR β + -CAF 的胰腺癌的策略可以改善胰腺导管腺癌的治疗。
正电子发射断层扫描(PET)成像,利用丙氧化葡萄糖(FDG)作为主要的放射性示踪剂,其显着提高了核肿瘤学领域。然而,其有效性受到限制的限制和对某些类型肿瘤的敏感性不足的限制。1这一挑战推动了寻找新型分子探针以增强或补充癌症管理中的FDG,尤其是在精确肿瘤学的进步和癌症发生率上升和死亡率的上升中。2020年全球癌症观察的最新统计数据报告说,全球大约有1,930万例新的癌症病例和1000万个与癌症有关的死亡。2这些发现强调了在抗癌作斗争中迫切需要更有效的诊断工具。癌症的发展,进展和转移会在肿瘤微膜中引起无数的动态变化,其中包括细胞外基质和各种细胞类型,包括癌症相关的纤维细胞(CAFS),免疫细胞和血管内皮细胞。在其中,CAF在肿瘤生长中起着至关重要的作用,并通过促进免疫逃避,细胞外基质重塑,新血管生成和耐药性,使其成为癌症研究和治疗策略的关键重点。3
在女性生殖系统中,最致命的癌性生长被称为上皮性卵巢癌 (EOC)。根据 2020 年全球癌症统计数据,卵巢癌在全球女性恶性肿瘤中排名第七,每年新发病例超过 310,000 例(Lee 等人,2022 年;Konstantinopoulos 和 Matulonis,2023 年)。卵巢癌每年夺走约 210,000 人的生命。2020 年,中国有 60,000 例新诊断病例被诊断为卵巢癌,并导致 40,000 人死亡(Zhao 等人,2023 年)。晚期卵巢癌患者的 5 年生存率约为 30%。随着多次复发,治疗和复发的间隔变得更短,导致对铂类药物的敏感性降低,最终发展为铂类耐药性。该病的治疗难度大,预后往往较差(Marchetti等,2021;Porter和Matulonis,2023)。克服卵巢癌的化疗耐药性是一个紧迫而重要的临床问题。炎症反应主要分为急性和慢性两类。急性炎症主要发生在物理、化学或急性感染情况下,是机体的早期防御机制,通常很快可自行缓解(Yang等,2023)。慢性炎症则发生在慢性感染或自身免疫性疾病中,机体正常的反馈调节无法阻止炎症,导致慢性炎症(Liu等,2022)。统计数据显示,全球约20%的恶性肿瘤是由慢性炎症引起的(Kennel et al., 2023; Venakteshaiah and Kumar, 2021; Haas et al., 2021),非甾体抗炎药物在临床上可以降低各类实体瘤的发病率和转移率,降低肿瘤引起的死亡率。慢性炎症被认为对癌症的发生、生长和进展有显著的影响。慢性炎症引发肿瘤发生、发展的机制多种多样,但往往与炎症为肿瘤提供的微环境有关。癌相关成纤维细胞(CAFs)作为癌症基质的重要组成部分,与炎症和肿瘤免疫微环境(TME)密切相关(Chen et al., 2021)。 CAFs 与 NF- κ B、PI3K-Akt、IL6-JAK-STAT3 和 TGF- β 等各种信号通路相互作用,帮助形成和维持 TME,影响 ECM 结构并产生免疫治疗耐药性(Mao et al., 2021; Wu F. et al., 2021)。此外,活化的 CAFs 促进单核细胞粘附并驱动巨噬细胞向 M2 极化方向分化,进一步抑制 TME 中的免疫反应(Lavie et al., 2022; Galbo et al., 2021)。因此,分析与炎症相关的基因与肿瘤免疫环境之间的关系有助于