自由电子激光器(FEL)设施的激光优化是一项耗时且具有挑战性的任务。不是由经验丰富的运营商手动操作,而是实施机器学习算法为FEL激光优化提供了快速且适应性的方法。最近,在真空紫外线设施-Dalian Cooherent Light Source(DCLS)上进行了这样的实验。已采用了四种算法,即标准和基于神经网络的遗传算法,深层确定性的策略梯度和软演员评论家加强学习算法,通过优化电子束轨迹来增强FEL强度。这些算法在增强FEL激光方面表现出显着的功效,尤其是仅在大约400次迭代范围内实现了收敛的增强学习。这项研究证明了机器学习算法用于FEL激光优化的有效性,从而提供了关于DCL自动操作的前瞻性观点。
从人类反馈中学习(RLHF)已成为一种至关重要的方法,可以通过诸如近端政策优化(PPO),直接偏好优化(DPO)等方法来使大型语言模型与人类偏好相结合,见证了快速的算法进化,增强了Oneforce One-Out Out-Out Out Ont-Out(Rloo)(RLOO),Remax,Remax,Remax和Group Oppers Policy Optimation(GRPO)(GRP)(GRPO)。我们提出了增强++,这是经典增强算法的增强变体,该变体融合了PPO中的关键优化技术,同时消除了对评论家网络的需求。增强++实现了三个主要目标:(1)简单性(2)增强的训练稳定性,以及(3)减少了计算开销。通过广泛的经验评估,我们证明,与GRPO相比,增强++在保持可比性能的同时,具有比PPO更高的计算效率表现出卓越的稳定性。该实现可在https://github.com/openrlhf/openrlhf上获得。
大型语言模型 (LLM) 的最新进展促成了功能强大的聊天机器人的开发,这些聊天机器人能够进行流畅的类人对话。然而,这些聊天机器人可能是有害的,表现出操纵、煤气灯效应、自恋和其他毒性。为了实现更安全、更适应的模型,我们提出了一个使用心理疗法来识别和缓解有害聊天机器人行为的框架。该框架涉及四个不同的人工智能 (AI) 代理:需要调整行为的聊天机器人、用户、治疗师和评论家,它们可以与基于强化学习的 LLM 调整配对。我们用一个涉及四个 ChatGPT 实例的社交对话的工作示例来说明该框架,表明该框架可以减轻 LLM 驱动的聊天机器人与人之间对话中的毒性。尽管未来仍有几个挑战和方向需要解决,但提出的框架是改善法学硕士与人类价值观之间一致性的一种有前途的方法。
摘要 - 随着用户应用程序服务需求的进步,IoT系统倾向于将任务运送到边缘服务器以进行执行。当前关于流量边缘计算的大多数研究都忽略了应用程序综合之间的依赖关系。主要用于单用户场景中,主要用于应用拓扑拓扑的边缘计算的少数研究。与以前的工作不同,我们的工作主要解决了在多源场景中使用边缘计算弹出的依赖任务,这更符合现实。在本文中,将流量问题的依赖任务建模为马尔可夫决策过程(MDP)第一。然后,我们通过共同考虑,通过共同考虑几个用户之间的应用拓扑,并共同考虑了一个基于有向的无环图(DAG)的嵌入层的参与者 - 批评机制。最后,模拟的结果还显示了所提出的Aced算法的优先级。
著名评论家、麻省理工学院语言学家诺姆·乔姆斯基是过去十年中知识分子异议的典型代表之一,他列出了十种最常见、最有效的策略,这些策略是“隐藏的”议程通过媒体操纵民众而采取的。从历史上看,媒体已被证明是塑造舆论的高效手段。由于媒体的宣传和宣传,社会运动被创造或摧毁,战争被合理化,金融危机被缓和,一些其他意识形态潮流被激发,甚至媒体成为集体心理中现实的生产者。但如何发现最常见的策略来理解这些我们肯定参与其中的社会心理工具?幸运的是,乔姆斯基被赋予了综合和揭露这些做法的任务,其中一些更明显、更复杂,但似乎都同样有效,从某种角度来看,它们具有贬低性。鼓励愚蠢、促进内疚感、分散注意力或制造人为问题然后神奇地解决它们,这些只是这些策略中的一部分。
在准备无人驾驶汽车(UAV)进行监视或恐怖主义的情况下,本研究提出了一种使用欺骗信号来指导无人机到达目标点的技术,该信号会干扰全球导航卫星系统(GNSS)。但是,用于欺骗的基于Waypoint估计的方法需要重复计算,从而使实时处理具有挑战性并降低其对目标点变化的响应能力。本文提出了一种使用强化学习的技术,该技术通过动态学习和适应飞行状态的变化而无需估算飞行状态,从而实时指导无人机欺骗路径。为了有效地学习实时飞行状态变更数据,利用了优势行为者(A2C)强化学习模型。在模拟中,开发了通过增强学习实时控制飞行的欺骗路径的模拟。应用了所提出的增强学习模型,并通过模拟实验验证了增强学习模型,在该实验中,更改了引导欺骗的目标点。
研究人员,以便公司成为一个整体。第一位全体会议发言人是 INSPACe - 空间部 Mahindra 有限公司。Goe 博士在移动行业发表了演讲。他强调了移动中心的重要性,应该引领人们研究技术如何改变并添加到技术中此外,他提出了一个批评,即使用电池化学制造电动汽车,而不是进口材料,这与电动汽车有关。移动中心的成功将有助于移动中心的活动并提供最大的移动平台。下一位全体会议发言人是 H Tallur 担任主持人。他讲述了他是如何创办这家公司的。来自 20 名风险投资家,在印度的行业中,建立了一个姊妹公司。他说:“特斯拉与 Ola 电动汽车类似,我有一个野心,可以探索为 IITB 做出贡献。第三位全体会议发言人是汽车公司总裁 M. Pradeep,他是 IIT Bombay 的模式合作伙伴,为行业联系做出贡献。
生成对抗网(GAN)[4]被提议为计算机视觉领域中的生成建模框架。gan从训练数据样本中学习了概率分布,因此从Random Noises生成了新图像。此“学习和生成”机制建立在对手上,一个分类器作为判别模型,以确定是否直接从数据中采样图像还是由发电机生成,也是另一个具有从随机噪声生成图像的代理组件。损失功能鼓励发电机使歧视器将生成的图像分类为实际数据。正如CS231N讲座中所讨论的那样,由于生成模型的本质是检测现有数据中的概率密度,然后对Vanilla Gan及其变体产生,因此这些gan犯罪者的最终输出的最终输出被模型为输入图像的可能性,是从数据中采样的实际图像,而不是生成的。这在以前的工作中被证明是有效的。但是,我们可以考虑其他方法,其中之一是Wasserstein-Gan(Wgan),它不训练歧视者(评论家)作为分类器输出