每个器官有两个相邻的容器模型,容器之间由毛细管(壁)膜隔开。这是一个集中系统模型,不考虑膜以外的质量传递阻力。该模型的第一个改进是克罗格圆柱体。[4] 毛细血管簇形成毛细管网络。研究人员使用细胞模型,将单位或细胞(在本例中为毛细管)与集合隔离开来。克罗格圆柱体 [4] 表示细胞和分布式系统,可提供更多信息,例如溶质渗透到血管外组织的程度。鉴于克罗格绘制的包括毛细血管在内的血管草图[4],他只能使用圆柱形模型(如图1所示)。此后,出现了其他更像网络的草图,但克罗格圆柱体仍可用作细胞。值得注意的是,在流经填料床时,Happel 的细胞模型 [5 ] 对于组成填料床的每个球体都非常适用,适用于整个系统。Pfeffer 将这种流体流动模型扩展到质量传递。[6 ] 与 Happel 的模型 [4 ] 类似,其中添加单元来表示填料床,假设 Krogh 圆柱体平行添加以组成器官。Brinkman 方程用于求解血管外组织中的流动。由于这些方程的线性,因此可以获得解析解,从而避免使用数值方法求解它们,因为这些方程非常僵硬。[7 ] 比率 ffiffiffi kp = L 非常小,其中 k 是血管外组织的渗透率,L 是毛细管的长度。已有许多关于 Krogh 圆柱体中的质量传递研究报告。 [8-14]然而,研究人员几乎从未考虑过血管外组织中流动的影响,也从未考虑过流场和浓度场的二维性。此前,我们曾考虑过 Krogh 圆柱中的流动,[7]其中血管外组织中的流动使用 Brinkman 方程建模,该方程允许流线弯曲和/或流动在横向具有空间变化。然而,我们几乎没有发现任何流动从小动脉末端离开毛细血管,又从小静脉末端返回,就像 Guyton 和 Hall 所建议的那样。[15]原因是图 1 中的血浆有两条平行的路径
图 2 抗 VEGF 药物诱发的血栓性微血管病 (TMA) 的特征性表现 AC. 贝伐单抗诱发的肾脏病变(AC. PAM 染色)。在肾小球毛细血管内,可见内皮下空间扩张(A. 箭头)。随着时间的推移,内皮下空间变宽(B. 箭头)并形成微动脉瘤(C. 箭头)。在狭窄的毛细血管腔周围扩张的内皮下空间内的肿胀物质(C. 箭头)凝固形成节段性玻璃变性。D. 抗 VEGF 药物诱发的肾小球 TMA 示意图。内皮损伤导致内皮下空间扩张,而原来的毛细血管管腔塌陷,导致形成充满蛋白质液体的微动脉瘤。随着时间推移,血浆水肿凝固,形成节段性玻璃样变性。虽然这些病变很独特,但当内皮细胞严重受损并伴有水肿性改变时,有时很难区分增宽的内皮下空间和扩张的毛细血管腔。
摘要:血管生成是由现有功能血管发生的新血液毛细血管的形成,该过程允许细胞应对养分短缺和氧气可用性低。血管生成可以在几种病理疾病中激活,从肿瘤生长和转移形成到缺血性和炎症性疾病。在过去几年中发现了对调节血管生成的机械主义的新见解,从而发现了新的治疗机会。但是,在癌症的情况下,它们的成功可能受到耐药性的限制,这意味着优化这种治疗的道路仍然很长。同源域相互作用的蛋白激酶2(HIPK2)是一种调节不同分子途径的多面蛋白,参与癌症生长的负调控,可以被视为“ BONAFERFE” ONCOS抑制分子。在这篇综述中,我们将讨论HIPK2与血管生成之间的新出现联系,以及HIPK2对血管生成的控制如何影响包括癌症在内的几种疾病的发病机理。
微血管是支持异质脑区神经元活动的供应网络的基础。毛细血管网络的连接性、密度和方向的共同点和异质点是什么?为了解决这个问题,我们以亚微米分辨率对整个成年小鼠脑中的微血管连接组进行了成像、重建和分析。图形分析揭示了整个大脑的共同网络拓扑结构,这导致了对血管稀疏的共同结构稳健性。基于解剖学精确重建的几何分析揭示了一种将长度密度(即每单位体积的血管长度)与组织到血管距离联系起来的缩放定律。然后,我们推导出一个公式,将代谢的区域差异与长度密度的差异联系起来,并进一步预测整个大脑的最大组织氧张力的共同值。最后,毛细血管的方向是弱各向异性的,除了一些强烈各向异性的区域;这种变化会影响 fMRI 数据的解释。
配备氢能储存系统 (HESS) 的发电厂,包括基于可再生能源 (RES) 的发电厂,是世界能源发展最有前景的领域之一 [1]。HESS 的关键要素是水电解器、氢气(有时是氧气)储存系统和燃料电池系统。水电解器利用一次电源的多余电能产生氢气(和氧气)。根据最终用户及其需求,生成的氢气可以以压缩形式、液化状态存储在各种载体上,例如金属氢化物、毛细管、微球和碳材料。不饱和烃的可逆加氢过程为安全储存和运输开辟了广阔的前景。一次电源电能的缺乏或缺失由燃料电池系统补偿,该系统将储存的氢气和氧气(来自氧气储存系统或空气)之间的反应化学能转换回电能。
在哈佛医学院的博士后职位,学生和技术人员立场即时,学生或技术人员职位。我们的实验室重点介绍了干细胞生物学与免疫学之间的新界面,称为“茎免疫学”。我们小组的一份手稿最近被本质上被接受(在出版社中接受; 2024年11月; https://doi.org/10.21203/rs.3.rs-2469338/v1)。尽管肿瘤免疫疗法和干细胞移植的应用不断增长,但干细胞与免疫系统之间的相互作用尚不清楚。尚不清楚免疫系统如何控制干细胞。在很大程度上尚不清楚如何控制对正常或恶性细胞的免疫反应。朝着新的“茎免疫学”中的此类问题,富士崎博士的小组测试了干细胞的专门微环境是否称为干细胞生态位,是干细胞的免疫学庇护所。从理论上讲,这将屏蔽正常/恶性/移植的干细胞免受免疫攻击,以及来自细胞应激反应。在1950年代证明了睾丸和胎盘作为免疫特权部位,即使在没有免疫抑制的情况下,移植的同种异体(allo-)或异类移植物也可能会持续长期。尽管最近在各种组织中鉴定出组织的干细胞壁ni,但在免疫学环境中尚未评估小众本身。几乎不知道体细胞壁ni是否具有广泛的免疫特权。成功的博士后研究员的候选人将获得博士学位。和/或M.D.学位。我们最近证明,骨髓内的造血干细胞(HSC)壁ne可容纳独特的调节性T细胞种群,该细胞群具有易裂免疫特权(细胞干细胞22,445-453,2018;自然474(7350),216-9-9,216-9,2011)。我们在自然界中的最新手稿(2024年11月,在新闻界接受)进一步确定了高度免疫特权,高度原始的HSC和其他HSC;由高度免疫保护壁ches屏蔽,在不同的BM生态位位置。我们证明了高级一氧化氮(NO)生成的HSC对免疫攻击难治。并展现出独特的“像睡美人一样的晚期升起”,但坚固而长期的血液重建。如此高度免疫特异性,高原始的无hscs位于地层中的独特内接毛细管处,其特征是高水平的免疫接收分子CD200,原发性纤毛,原发性纤毛和分子/表型特征是血管发芽的血管发育特征。这些专门的毛细血管通过创新的纤毛蛋白IFT20/CD200/eNOS/自噬轴控制NO HIS的再生功能。毛细血管进一步维持了小裂treg的池大小,增强了无hscs的免疫特权。值得注意的是,免疫力较低,效力较低,没有低HSC在先前描述的利基成分,正弦或型H血管上共定位。这些观察结果证明了HSC和不同的BM壁ni中的新型分层结构,这既决定了再生功能和免疫耐受性。我们正在寻找对我们现在在以下方式中扩展了该创新项目:干细胞/利基调节;自我耐受; Treg生物学;不同外围器官中的干细胞;和癌症。使用多种实验方法,包括转基因动物模型,人类样品,RNA/TCR测序,空间转录组学和插入式两光子显微镜。候选人更喜欢(但不需要)在以下领域之一中具有专业知识:干细胞生物学;免疫学;癌症生物学; RNA/DNA测序; T细胞受体测序;细胞重编程;和计算生物学。
星形胶质细胞是大脑中的关键细胞,负责为大脑毛细血管和血脑屏障提供支持,调节离子和营养物质流入大脑,并与小胶质细胞一起参与大脑的炎症反应。星形胶质细胞这个名字源于这些细胞的形态,因为它们的分支类似于星星。星形胶质细胞的形态和分支会因疾病而发生变化,因此,对分支细胞过程的数量、长度和复杂性、细胞直径和其他特征进行成像和评估可以揭示这些细胞在不同条件下暴露后的功能或功能障碍的信息。我们的实验室从整个大鼠脑中分离星形胶质细胞、小胶质细胞和其他神经血管细胞,以研究它们对缺氧缺血性损伤等刺激的反应。分离后,我们将培养的细胞暴露于损伤条件下,然后评估暴露于损伤如何影响细胞与纳米粒子的相互作用。这让我们初步了解了同样在我们实验室中配制的纳米治疗剂如何与患病环境中的靶细胞相互作用。图中是一组培养的星形胶质细胞(白色),与小胶质细胞(洋红色)共培养,并用共聚焦显微镜成像。
宽带中红外(IR)超脑激光源对于分子指纹区域的光谱学至关重要。在这里,我们报告了AS 2 S 3-Silica Nansospike Hybrid Waveguides的产生,并在2 s-Silica Nansospike Hybrid波动中产生,由定制的2.8μm飞秒纤维激光器泵送。波导是由压力辅助熔融AS 2 s 3的压力融化到二氧化硅毛细管中形成的,从而可以精确地定制分散体和非线性。连续的相干光谱从1.1μm到4.8μm(30 dB水平)时,在设计波导时会观察到2.8μm在异常的分散体状态中。首次制造和研究了线性锥形的毫米尺度为2 s-3-silica波导,据我们所知,与均匀的波导相比,具有重新的规格相干性,表现出比均匀的波导更宽。由于熔融二氧化硅鞘屏蔽了AS 2 S 3,因此波导被证明是长期的稳定和防水。他们提供了产生宽带MID-IR超孔的替代途径,并在频率计量学和分子光谱中应用,尤其是在潮湿和水性环境中。©2021中国激光出版社
以及最近的临床研究。11 – 21 在 PAI 中,当纳秒激光照射组织时,发色团(例如氧合血红蛋白 (HbO 2 ) 和脱氧血红蛋白 (Hb))会吸收能量并通过热弹效应产生光声波。1 , 22 – 25 产生的波由超声换能器检测并通过图像重建算法进行处理。PAI 以前曾用于在小型和大型动物模型中提供高分辨率脑血管结构和功能图像。26 – 28 高分辨率功能性脑成像系统可以解答许多神经科学问题。22 , 29 , 30 对于功能成像,PAI 依赖于与功能性磁共振成像相同的原理,通过对脑血流动力学波动(即氧需求变化)进行成像来间接捕获神经活动。已报道了许多将 PAI 用于功能性脑成像的应用。例如,Wang 等人。4 对大鼠脑在胡须刺激、高氧和缺氧反应下的脑血流动力学变化进行了成像;Nasiriavanaki 等人。22 , 31 开发了一种光声计算机断层扫描 (PACT) 系统来监测小鼠脑皮质静息状态功能连接;1 Kang 等人。对小鼠脑癫痫发作期间的神经元活动进行了成像; 32 Liao 等人33 对大鼠脑响应前爪电刺激的血流动力学变化进行了成像;Janggun 等人34 开发了一种功能性 PAI 系统来监测可卡因引起的大鼠脑区域激活。PAI 有两种主要实现方式:PACT 和光声显微镜 (PAM),后者根据聚焦方式进一步分为两类,即声学分辨率-PAM 和光学分辨率 PAM (OR-PAM)。1 , 35 虽然 PACT 用于对较深区域较大血管的血流动力学参数进行成像, 4 , 22 , 36 – 39 PAM 用于对细小血管(即浅层毛细血管)进行成像。40 – 45 与脑内较大的血管相比,对毛细血管血流动力学变化的分析可以更详细地了解脑功能。OR-PAM 的早期版本使用 2D 振镜扫描仪,在约 2 分钟内提供直径约为 6 毫米的成像区域。46 通过结合更快的扫描硬件,例如微机电系统镜,第二代 OR-PAM 系统变得更快。例如,Yao 等人。47 开发了一种 OR-PAM 系统,能够在 37 秒内对 2.5 × 4 平方毫米的区域进行成像;Lan 等人。48
插入中央血管的导管,其尖端位于上腔静脉、下腔静脉或右心房的下三分之一处。CVAD 可用于输送静脉 (IV) 药物、IV 液体、肠外营养液、血液和血液制品。细胞毒性 1 一种治疗剂,旨在(但不限于)治疗癌症。细胞毒性药物是危险药物,在人类或动物中表现出以下一种或多种特性:致癌性、致突变性(遗传毒性)、致畸性、生殖或发育毒性、低剂量时的器官毒性。分散和稀释一种处理特定药物外渗的策略,包括在患处应用热敷。这会导致血管舒张,从而增加药物分布并有助于药物从损伤部位扩散。可根据当地政策使用增加吸收的药物,例如透明质酸酶。红斑 毛细血管扩张和充血导致皮肤发红,通常是炎症或感染的征兆。 渗出 静脉注射过程中液体从血管中逸出/意外泄漏到周围组织或皮下空间 在癌症治疗中,这是指注射过程中 SACT 的泄漏。渗出可能会引起疼痛或无痛。