摘要 — 可靠的婴儿哭声识别在婴儿护理和监护中起着至关重要的作用,但现实环境由于背景噪音对系统准确性构成了挑战。本研究提出了一种用于在不同噪音条件下识别婴儿哭声的新型 CNN 架构,该架构具有三个卷积层、一个最大池化层和 0.5 丢失集,并将其性能与标准 RNN 模型进行了比较。这些模型以 64 的批大小训练了 100 个时期,并在干净和嘈杂的环境中进行了评估。为了模拟真实场景,将录音转换成音频信号并受到不同程度的背景噪音的影响,特别是在不同的信噪比 (SNR) 下。结果表明,两种模型在无噪音条件下都实现了高精度 (>89%)。然而,在 10dB 噪音下,提出的 CNN 比 RNN 保持了更高的精度 (93%) 和总体准确率 (91%),证明了其在婴儿哭声识别方面的卓越抗噪性。这种改进归功于 CNN 能够捕捉音频信号中的空间特征,这使其不易受到噪音干扰。这些发现有助于开发更可靠、更强大的婴儿哭声识别系统。
近年来,面部识别的兴起是一种重要的技术进步,在该领域中有多种应用,包括安全,监视,身份验证系统和人类计算机界面。许多部门由于能够根据面部特征自动识别和验证人们的能力而进行了根本性的变化,从而为创新开辟了新的创新大门。面部识别的主要目的是创建可以正确识别和从图片或视频中验证人员的自动化系统。传统方法捕获复杂和歧视性面部模式的局限性包括对手工特征和浅学习技术的依赖。然而,自引入深度学习以来,面部识别取得了长足的进步,尤其是卷积神经网络(CNNS)。cnns是捕获精细面部特征的理想工具,因为它们为层次表示的出色能力显示出了惊人的能力,可以直接从未经处理的图像数据中学到。在本文中,作者专注于使用CNN模型的面部识别,旨在提高这种关键技术的准确性和韧性。作者已经采用了完善的CNN模型来应对面部识别的挑战。我们利用深度学习自动从面部图像中识别和提取高级特征,从而实现了更准确和可靠的识别。CNN模型的体系结构是为了利用面部数据中可见的基本空间链接和区域模式的创建。通过利用大量的卷积和合并层,该模型可以成功捕获低级品质,例如边缘和纹理以及高级面部特质,例如面部标志和表达式。
摘要 - 图像恢复旨在重建其损坏版本中的高质量图像,在许多情况下扮演重要角色。最近几年见证了图像恢复从卷积神经网络(CNN)转变为基于变压器模型的范式,因为它们可以建模远程像素相互作用的强大能力。在本文中,我们探讨了CNN在图像恢复中的潜力,并表明所提出的称为Convir的简单卷积网络体系结构可以与变压器对应物相比或更好。通过重新审查高级图像恢复算法的特征,我们发现了几个关键因素,导致恢复模型的性能提高。这激发了我们基于廉价的卷积操作员开发一个新颖的网络来修复图像。全面的实验表明,在五个代表性的图像恢复任务上,我们的convir在20个基准数据集中提供了最先进的性能,包括图像去悬式,图像运动/defocus deblurring,图像驱动和图像删除。
摘要:近几十年来,许多不同的政府和非政府组织将测谎用于各种目的,包括确保犯罪供词的真实性。因此,这种诊断是用测谎仪来评估的。然而,测谎仪有局限性,需要更可靠。这项研究介绍了一种使用脑电图 (EEG) 信号检测谎言的新模型。为实现这一目标,我们创建了一个包含 20 名研究参与者的 EEG 数据库。本研究还使用六层图卷积网络和 2 型模糊 (TF-2) 集进行特征选择/提取和自动分类。分类结果表明,所提出的深度模型可以有效区分真话和谎言。因此,即使在嘈杂的环境中 (SNR = 0 dB),分类准确率仍保持在 90% 以上。所提出的策略优于当前的研究和算法。其卓越的性能使其适用于广泛的实际应用。
摘要。目的:面部识别已成为人工智能研究中越来越有趣的领域。在这项研究中,本研究旨在探索通过TensorFlow实施的CNN的应用,以开发出强大的模型,以增强学生出勤系统中的面部识别精度。这项研究的重点是开发一个模型,该模型使用在计算机科学系的实习出勤记录中收集的多级学生图像中的多级学生图像中识别学生面孔。方法:包含19名学生的面部图像的数据集成为培训和验证CNN模型的基础。该数据集来自计算机科学系的实习记录,其中包括231张培训图像和59张验证图像。预处理阶段包括面部区域检测和分类,导致组织良好的数据集用于培训和验证。由七层组成的CNN体系结构经过精心设计,以实现最佳性能。结果:该模型表现出非凡的准确性,在300个训练时期后,验证数据集的93%达到了93%。精确度,召回和F1得分指标被跨不同类别进行详细评估,强调了该模型在准确地对面部图像进行分类方面的熟练程度。使用基于VGG-16的模型进行比较分析,展示了提出的CNN体系结构的优越性。此外,Web服务的实施证明了该模型的实际适用性,以少于0.3秒的出色响应时间提供准确的预测。新颖性:这项全面的研究不仅提高了面部识别技术,而且还提出了适用于现实情况的模型,尤其是在学生出勤系统中。关键字:面部识别,机器学习,深度学习,CNN于2024年5月 / 2024年5月修订 / 2024年5月接受,这项工作已根据创意共享归因4.0国际许可获得许可。
摘要 – 精确和新颖的脑癌 MR 图像处理在决策和患者治疗决策中发挥着重要作用。MR 图像处理中的关键挑战是 X 射线设备捕获的低级视觉数据与人类评估者看到的高级数据之间的语义差距。传统的系统控制模型仅适用于低级或高级技能,使用一些手工定制的元素来缩小这个差距,并且需要精确的元素提取和分类方法。深度学习的最新进展表明,深度学习取得了巨大进步,并且深度学习卷积神经网络 (CNN) 已在图像分类项目中占据主导地位。深度学习对于特征描述非常有用,它可以完整地描述低级和高级数据,并将元素提取和分类部分植入自我意识中,但总体上需要巨大的训练数据集。对于大多数深度学习情况,训练数据集很小,因此,在小数据集上练习深度学习和训练 CNN 是一项艰巨的任务。针对这一问题,我们使用了预训练的深度 CNN 模型。我们的方法更稳定,因为它不使用任何精心构建的技能,只需要很少的预处理,并且可以在 5 次重叠移动验证下获得 95.51% 的平均精度。我们不仅使用传统的机器学习来测试我们的结果,而且还使用 CNN 的深度学习技术来测试我们的结果。试验结果表明,我们提出的方法在 MRI 数据集上超越了现代类别
摘要 脑肿瘤具有破坏关键脑功能和表现出神经症状的潜力,构成重大威胁,值得高度关注。这些肿瘤的评估依赖于各种成像方法,包括计算机断层扫描 (CT)、磁共振成像 (MRI) 和超声。特别是,脑部 MRI 因其能够提供对脑结构和组织异常的重要见解而闻名。这项研究利用技术的变革性影响,特别是人工智能 (AI) 和深度学习 (DL),来应对这一挑战。新方法涉及卷积神经网络 (CNN) 与 VGG19 和 ResNet 的迁移学习的集成。主要目标是将脑肿瘤分为四个不同的类别:脑膜瘤、神经胶质瘤、垂体腺瘤和无肿瘤病例。单独的 CNN 模型实现了令人印象深刻的 97.23% 的准确率。然而,当与 VGG19 和 ResNet 集成时,准确率飙升至更高的 98.26%。这种创新的技术融合对于提高脑肿瘤分类的准确性具有巨大的希望,有可能重塑神经影像和医疗保健的格局。
脑瘤是脑细胞的异常生长。与正常细胞不同,脑瘤细胞会不受控制地生长和分裂,形成一团组织。脑瘤可能是良性的(非癌性的),也可能是恶性的(癌性的)。脑瘤是全世界范围内的重大健康问题,影响着各个年龄段的人。脑内细胞的这些异常生长会导致严重的健康并发症,如果不及时治疗,可能会危及生命。脑瘤的确切病因尚不清楚,但存在许多风险因素,包括年龄、家族史、辐射暴露、某些遗传性疾病。脑瘤检测项目的目标是使手动检测和分类脑瘤的过程自动化,以获得更好、更快的结果。传统上,脑瘤是使用 MRI 扫描检测的。肿瘤类型的多变性可能导致误解,从而产生假阳性或假阴性。早期诊断脑瘤对于改善患者预后至关重要。 CNN 能够从复杂数据(例如脑部 MRI 扫描)中学习复杂的模式和特征,这彻底改变了肿瘤检测过程。脑肿瘤在早期阶段可能难以检测,但 CNN 有可能提高脑肿瘤检测的准确性和效率。基于 CNN 的系统可实现检测过程的自动化,从而减少对 2 个人工解释的依赖。
摘要 - 创伤性脑损伤(TBI)是一个重大的全球健康问题,通常会导致长期残疾和认知障碍。对TBI的准确及时诊断对于有效的治疗和管理至关重要。在本文中,我们提出了一个新型联邦卷积神经网络(FEDCNN)框架,用于在分散的健康监测中对TBI进行预测分析。该框架在Python中实现,利用了三个不同的数据集:CQ500,RSNA和中心-TBI,每个数据集都包含与TBI相关的带注释的脑CT图像。该方法包括数据预处理,使用灰度级别共发生矩阵(GLCM)的特征提取,采用蚱hopper优化算法(GOA)的特征选择以及使用FEDCNN进行分类。与现有方法(例如Dann,RF和DT和LSTM)相比,我们的方法的精度为99.2%,超过1.6%。FEDCNN框架提供了分散的隐私性 - 在各个网络之间保存培训,同时与中央服务器共享模型参数,从而确保健康监控中的数据隐私和分散化。评估指标在内,包括准确性,精度,召回和F1得分表明了我们方法在准确分类与TBI相关的正常和异常脑CT图像方面的有效性。ROC分析进一步验证了FedCNN框架的判别能力,强调了其作为TBI诊断的先进工具的潜力。我们的研究通过为TBI管理提供了可靠,有效的方法,为分散的健康监测领域做出了贡献,从而在患者护理和医疗保健管理方面提供了重大进步。未来的研究可以探索扩展FedCNN框架以结合其他模式和数据集,并集成先进的深度学习体系结构和优化算法,以进一步提高医疗保健应用程序中的性能和可扩展性。
在图像处理领域,众所周知的模型是卷积神经网络或CNN。设置该模型的独特好处是其使用数据中包含的相关信息的非凡能力。即使取得了惊人的成就,传统的CNN也可能在概括,准确性和计算经济方面进一步改善。但是,如果模型或数据维度太大,则正确训练CNN并快速处理信息可能具有挑战性。这是因为它将导致数据处理滞后。量子卷积神经网络(简称QCNN)是一种新颖的量子解决方案,可以增强现有学习模型的功能或解决需要将量子计算与CNN组合组合的问题。为了强调量子电路在提高特征提取能力方面的灵活性和多功能性,本文比较了针对基于图像的任务的深度量子电路体系结构,它使用经典的卷积神经网络(CNNS)和一种新颖的量子电路体系结构进行了比较。使用COVIDX-CXR4数据集用于训练量子CNN模型,并将其结果与其他模型的结果进行了比较。结果表明,当与创新的特征提取方法配对时,建议的深量子卷积神经网络(QCNN)在处理速度和识别精度方面优于常规CNN。即使需要更多的处理时间,QCNN就识别准确性而优于CNN。在对Covidx-CXR4数据集进行训练时,这种优势变得更加明显,证明了更深的量子计算有可能完全改变图像分类问题的潜力。