Loading...
机构名称:
¥ 1.0

近年来,面部识别的兴起是一种重要的技术进步,在该领域中有多种应用,包括安全,监视,身份验证系统和人类计算机界面。许多部门由于能够根据面部特征自动识别和验证人们的能力而进行了根本性的变化,从而为创新开辟了新的创新大门。面部识别的主要目的是创建可以正确识别和从图片或视频中验证人员的自动化系统。传统方法捕获复杂和歧视性面部模式的局限性包括对手工特征和浅学习技术的依赖。然而,自引入深度学习以来,面部识别取得了长足的进步,尤其是卷积神经网络(CNNS)。cnns是捕获精细面部特征的理想工具,因为它们为层次表示的出色能力显示出了惊人的能力,可以直接从未经处理的图像数据中学到。在本文中,作者专注于使用CNN模型的面部识别,旨在提高这种关键技术的准确性和韧性。作者已经采用了完善的CNN模型来应对面部识别的挑战。我们利用深度学习自动从面部图像中识别和提取高级特征,从而实现了更准确和可靠的识别。CNN模型的体系结构是为了利用面部数据中可见的基本空间链接和区域模式的创建。通过利用大量的卷积和合并层,该模型可以成功捕获低级品质,例如边缘和纹理以及高级面部特质,例如面部标志和表达式。

使用实时卷积神经网络的面部识别

使用实时卷积神经网络的面部识别PDF文件第1页

使用实时卷积神经网络的面部识别PDF文件第2页

使用实时卷积神经网络的面部识别PDF文件第3页

使用实时卷积神经网络的面部识别PDF文件第4页

使用实时卷积神经网络的面部识别PDF文件第5页

相关文件推荐

2020 年
¥2.0
2021 年
¥1.0