这项研究强调需要改善诊断方案并提高意识,以有效地管理Covid-19及其并发症,尤其是肺炎,以减轻医疗保健系统负担的负担,这强调了早期识别肺炎的早期识别的重要性重要性,以减轻与造成影响和快速症状的战略方法,以减轻造成影响和快速症状。引入了一种用于检测Covid-19肺炎的新型模型,利用在开源平台上可用的胸部X射线图像和卷积神经网络,并在二进制分类设置中进行了精确的诊断。遵循两个步骤,以提高分类精度并避免过度拟合:(1)在保持分类方案的平衡时放大数据集; (2)结合正则化技术并进行超参数优化。该模型非常适合在本地部署有限的能力,而无需互联网访问。由于网络大小,模型容量大大降低。与文献进行了比较,最终模型的性能更好,并且需要更高的参数,同时达到99.63%的分类准确性,对于二进制案例,模型灵敏度为93.75%。这些模型可以上传到数字平台,以快速诊断并弥补缺乏专业人员和RT-PCR(逆转录聚合酶链反应)。
主要关键词