• 接触电阻在 1 分钟内迅速减小。然后在接下来的一个小时内逐渐减小。• 如果随后关闭开关并重复测试,则新的起始电阻会更低。• 如果关闭开关并保持关闭状态。下次打开时,接触电阻会再次升高。• 与 MEMS 开关的文献一致。• 注意:即使最高的接触电阻仍然相对较低(小于 2 欧姆)。
摘要电压门控钠(Na V)通道Na V 1.7由于其参与人类疼痛综合征,已被确定为潜在的新型镇痛靶标。然而,临床上可用的Na V通道阻断药物在9个Na V通道亚型中没有选择性,Na V 1.1 – Na V 1.9。此外,当前已知的Na V 1.7亚型选择性抑制剂(芳基和酰基磺胺)的两个已知类别具有不良特征,可能会限制其发育。到这一点理解Na v 1.7抑制剂的酰基磺酰胺类别的结构 - 活性关系,例如临床开发候选GDC-0310的例证,仅基于芳基磺胺酰胺抑制剂的单个共晶体结构,与电压 - 传感 - 感应 - sensing-sensing-sensing-sensing-domain domain domain 4(vsd4(VSD4)。为了推进针对Na V 1.7通道的抑制剂设计,我们使用低温电子显微镜(Cryo-EM)追求高分辨率结合的Na V 1.7-VSD4结构。在这里,我们报告了GDC-0310通过与芳基磺胺酰胺抑制剂类结合姿势正交结合模式与Na V 1.7-VSD4接合,该模式识别Na V通道中的可预见的未知配体结合位点。这一发现实现了一种新型杂种抑制剂系列的设计,该系列桥接了芳基 - 磺胺酰胺结合口袋,并可以产生具有实质性分化的结构和特性的分子。总体而言,我们的研究强调了使用迭代和高分辨率结构引导的抑制剂设计来追求挑战性药物靶标的冷冻EM方法的力量。这项工作还强调了膜双层在优化靶向VSD4的选择性NA V通道调节器中的重要作用。
sirtuin 6(SIRT6)是一种多面蛋白脱乙酰基酶/脱酰基酶,也是小分子寿命和癌症的主要靶标。在染色质的背景下,SIRT6在核小体中去除组蛋白H3的乙酰基,但是其核小体底物偏好的分子基础尚不清楚。我们的冷冻 - 与核小体复合体中人类SIRT6的电子显微镜结构表明,SIRT6的催化结构域从核小体入门位点pries DNA pries DNA,并通过使用呼吸酶锚固的组蛋白酸性贴剂结合了组蛋白H3 N末端螺旋,而SIRT6 Zinc Zinc结合域则与SIRT6 Zinc 6 Zinc结合域结合。此外,SIRT6与组蛋白H2A的C末端尾巴形成抑制作用。该结构提供了有关SIRT6如何脱乙酰化H3 K9和H3 K56的见解。
云计算正在增加对大规模、节能和快速计算系统的需求。满足这些目标的 CMOS 电路样式是动态逻辑。由于云计算中心不需要可移植性,因此这些系统可以支持低温操作。低温操作消除了动态电路的根本问题,即由于漏电流导致的逻辑状态丢失。在较高温度下,静态逻辑电路是首选,因为这些电路不受漏电流的影响。因此,工作温度会影响电路样式的选择:动态还是静态。本文讨论了动态 CMOS 电路在不同温度下的运行以及动态逻辑优于静态逻辑的温度。在 1.209 GHz 以上运行的动态逻辑可用于高达 300 K 的温度下,对于 160 nm 技术节点,温度为室温。在较低频率下,应使用静态电路。在 77 K 以下(液氮温度),动态逻辑在 29.7 MHz 以上稳定。在低于 11 K 的温度下,可以使用运行在 1 赫兹以上的动态逻辑电路。由于动态逻辑电路在 4.5 K 以下的直流下工作,因此在低于此温度的任何频率下,包括液氦温度 4.2 K,动态逻辑都是可取的。
- 风洞 - 高分辨率粉末衍射仪(HRPD) - 残余应力衍射仪(RSD) - 小角度中子谱仪(SANS) - 核磁共振(NMR) - 电磁兼容性(EMC) - 等等。
因此,本研究首先简要介绍一些重要的机械测试方法,然后概述聚合物复合材料,最后描述聚合物复合材料在暴露于低温时强度、模量、韧性、脆性和热导率等性能的变化,并与强度、模量、韧性、脆性和热导率等类似性能进行比较。还重点介绍了聚合物复合材料的机械和热性能的不同表征数据,以评估其是否适合低温应用,这将作为一份关于温度变化对低温范围内改性聚合物性能影响的综合报告,使人们熟悉聚合物复合材料在低温下的性能和行为。
• 19 名 ASIC 设计师(2 名 JA)+ 1 个空缺职位 • 1 名博士、1 名 EECS 硕士生(西北大学) • 1 名科学家、2 名应用物理学家 • 1 名测试工程师、1 名工程助理 2021 年为学士、硕士或博士后学生启动 ASIC 设计助理计划(3-6 个月的培训计划) • 2021 年 5 名实习生(卡内基梅隆大学、多伦多大学、西北大学) • 4 名实习生(斯坦福大学、普渡大学、多伦多大学、UTA)– 2022 年将再招聘 2 名实习生
寻找生命:低温机器人对木星冰冷卫星木卫二的探测任务目标 学生将: § 了解我们如何确定另一个天体的构成 § 分析数据以了解木卫二的不同层面 § 构建木卫二层面的 3D 模型横截面 § 描述未来如何使用低温机器人对木卫二进行探测 § 定义低温机器人,即“一种可以穿透水冰的机器人。低温机器人利用热量融化冰,并利用重力下沉。” § 演示此低温机器人如何穿透木卫二的冰壳,到达其液态海洋并探索生命迹象 § 有效协作和沟通,以创建未来现实世界的 NASA 任务 建议年级 5 年级 - 12 年级 学科领域 天文学、生命科学、工程学、物理科学 时间表 40 - 60 分钟 NGSS 科学标准 • 3-5-ETS1-2 根据每个问题的标准和约束的程度,生成并比较问题的多种可能解决方案 • MS-LS1-5 - 根据环境和遗传因素如何影响生物生长的证据构建科学解释 • MS-LS2-1 - 分析和解释数据以提供资源可用性对生态系统中生物和生物种群的影响的证据 • MS-PS1-6 - 开展设计项目,构建、测试和修改通过化学过程释放或吸收热能的设备 • MS-ETS1-2 使用系统过程评估竞争设计解决方案,以确定它们满足问题的标准和约束 • HS-ETS1-2 通过将复杂的现实问题分解为可以通过工程解决的更小、更易于管理的问题来设计解决方案 21 世纪基本技能 • 批判性思维/解决问题、协作和团队合作、技术素养、开展调查、沟通、构建解释
PPMS 是一个完整的测量系统,由低温恒温器、超导磁体和用于进行特性测量的控制电子设备组成。该系统有一个 12 针样品盘,通过低温恒温器侧面的 LEMO 连接器连接。在常规操作期间,样品连接器连接到 PPMS 电子设备,系统的 MultiVu™ 软件控制样品空间的场和温度,同时协调 PPMS 系统中包含的测量电子设备。
高温超导 (HTS) 带可以通过非常细的导线传输非常大的电流,而且没有电阻。这意味着 HTS 带可以缠绕成不产生热量的轻质高场电磁铁。因此,HTS 电磁铁在太空领域非常有用,因为太空领域对尺寸和重量有极大的限制,而且很难通过辐射方式消散传统铜电磁铁产生的热量。因此,HTS 被认为是一种小型化技术,能够在小型卫星上产生高磁场,用于电力推进、辐射屏蔽、姿态控制和感应储能等应用。HTS 设备需要在低温下运行,通常在 77 K 或以下。使用电制冷机可以在太空中保持这些低温。制冷机的性质及其与 HTS 电磁铁的集成方式对 SWaP(尺寸、重量和功率)要求有重大影响。本文介绍了旨在集成到立方体卫星中的 HTS 电磁铁设计的建模和初步物理测试。这项工作采用数值建模和实验相结合的方法,研究了单个微型低温冷却器是否可以将 HTS 电磁铁冷却到临界温度以下。使用 Sunpower CryoTel MT 低温冷却器,重量仅为 2.1 千克,长度和直径分别仅为 243 毫米和 73 毫米,仅使用 40 W 的输入功率即可获得低于 75 K 的电磁铁温度,同时保持 40 °C 的热端温度。这表明 HTS 电磁铁可以使用微型单级低温冷却器在小型卫星上运行。