摘要:纳米颗粒(1至100 nm)具有独特的物理和化学特性,这使其适合在广泛的科学和技术领域中应用。尤其是金属纳米颗粒(MNP)研究表现出有希望的抗菌活性,为新应用铺平了道路。然而,尽管对其抗菌潜力进行了一些研究,但抗菌机制仍未得到很好的确定。纳米颗粒的生物合成使用植物提取物或微生物,已显示出令人鼓舞的结果,作为化学合成的绿色替代品。但是,关于其背后机制的知识既不是丰富的也不是共识。在这篇综述中,收集了有关MNP的抗菌和生物合成机制的研究,并提出了基于证据的机制。第一个揭示了内部金属离子酶促干扰的重要性,而第二个则说明了还原和负电荷分子的作用。此外,总结了和分析了最近研究(2018-2022)对使用微生物的MNP的生物合成的主要结果,并证明了使用细菌旨在测试其抗药性潜在的细菌合成的银纳米颗粒研究的流行。最后,应用于文化遗产材料的MNP的研究的提要显示了其未来在保存中的使用。
摘要:尽管进行了大量的优化工作,但开发一种有效的序列特异性 CRISPR/Cas 介导的基因组编辑方法仍然是一项挑战,尤其是在小麦等多倍体谷类物种中。因此,在植物体内使用核酸酶构建体之前验证其有效性是每个编辑实验的重要步骤。提出了几种构建体评估策略,其中 PEG 介导的幼苗衍生原生质体的质粒转染最受欢迎。然而,这种方法的实用性受到相关构建体拷贝数偏差和染色质松弛的影响,这两者都会影响结果。因此,为了对 CRISPR/Cas9 构建体进行可靠的评估,我们提出了一种基于农杆菌介导的已建立小麦细胞悬浮培养物转化的系统。该系统用于评估旨在靶向 ABA 8'-羟化酶 1 基因的 CRISPR/Cas9 构建体。通过经济高效的桑格测序和生物信息学分析方法验证了编辑的效率。我们讨论了该方法与其他体外方法相比的优势和未来的潜在发展。
INC 读者 #15:Chloë Arkenbout、Jack Wilson 和 Daniel de Zeeuw(编辑),《批判性模因读者:病毒图像的全球突变》,2021 年。INC 读者 #14:Geert Lovink 和 Andreas Treske(编辑),《视频漩涡读者 III:Youtube 十年内幕》,2020 年。INC 读者 #13:Miriam Rasch(编辑),《让我们变得有形》,INC 长篇样本 2015-2020,2020 年。INC 读者 #12:Loes Bogers 和 Letizia Chiappini(编辑),《批判性制造者读者:(不)学习技术》,2019 年。INC 读者 #11:Inte Gloerich、Geert Lovink 和 Patricia de Vries(编辑),《MoneyLab 读者 2:克服炒作》, 2018。INC 读者 #10:Geert Lovink、Nathaniel Tkacz 和 Patricia de Vries(编),MoneyLab 读者:数字经济中的干预,2015。INC 读者 #9:René König 和 Miriam Rasch(编),查询社会:对网络搜索的思考,2014。INC 读者 #8:Geert Lovink 和 Miriam Rasch(编),与我们不一样:社交媒体垄断及其替代品,2013。INC 读者 #7:Geert Lovink 和 Nathaniel Tkacz(编),批判观点:维基百科读者,2011。INC 读者 #6:Geert Lovink 和 Rachel Somers Miles(编),视频漩涡读者 II:超越 YouTube 的移动图像,2011。INC 读者 #5:Scott McQuire、Meredith Martin 和Sabine Niederer (eds),《城市屏幕读本》,2009 年。INC 读本 #4:Geert Lovink 和 Sabine Niederer (eds),《视频漩涡读本:对 YouTube 的回应》,2008 年。INC 读本 #3:Geert Lovink 和 Ned Rossiter (eds),《我的创造力读本:对创意产业的批判》,2007 年。INC R
文化”指导了国家对早期农业生物技术的反应,以及粮食作物中基因组编辑的出现。我们发现,“基于产品”的调查方法的各个方面在美国的生物安全框架中基本上维持了,并且英国和德国的方法在不同阶段的不同阶段结合了“基于过程”和“程序化”元素,这些元素涉及基因组编辑的科学和社会政治新颖性,以介绍为Varying Steles。我们试图通过探索如何围绕新兴的农业生物技术实现或限制公共推理的变化机会结构来解释这些稳定和改变的模式。通过展示机会结构和监管文化如何在长期内相互作用,我们提供了见解,以帮助我们解释基因组编辑治理中的当前和不断发展的动态以及农业生物技术的长期发展。
此外,导致动物痛苦和/或疼痛的实验程序,包括创伤性病变,药物给药,暴露于神经毒性,诱导炎症,神经变性/神经病理学,脱髓鞘,可以直接应用于切片,以实现细分。根据细化原则,通过几种转染技术,通过几种转染技术,通过几种转染技术来操纵切片后,进一步增加了这些模型在神经科学研究中的使用的观点。例如,使用重组腺癌相关病毒(RAAV)介导的基因递送来选择性地操纵神经元,星形胶质细胞,小胶质细胞,少突胶质细胞或组合,现在可以通过模型的实验探索细胞自主和非细胞自主和非电池的机械性。
作者:Elmaz Asan、Franco 'Bifo' Berardi、Andrii Dostliev、Lia Dostlieva、Olexii Kuchanskyi、Karyna Lazaruk、Geert Lovink、Lera Malchenko、Svitlana Matviyenko、Maria Plichta、Ellen Rutten、Maria van der Togt、Marc Tuters、Michał Tuters 'rysiek' Wozniak
近年来,患者来源的原代细胞培养物在癌症临床前检测(包括药物筛选和遗传毒性研究)中的应用有所增加。然而,它们的转化价值受到多种限制的制约,包括可能由培养条件引起的多变性。在这里,我们表明常用于繁殖原代黑色素瘤培养物的培养基组成限制了它们对其肿瘤来源的代表性和细胞可塑性,并改变了它们对治疗的敏感性。事实上,我们建立并比较了不同黑色素瘤患者的培养物,这些培养物在低酪氨酸(Ham's F10)或高酪氨酸(补充酪氨酸的 Ham's F10 或 RPMI1640 或 DMEM)培养基中平行繁殖。酪氨酸是黑色素生物合成的前体,该过程在分化的黑色素细胞和黑色素瘤细胞中特别活跃。出乎意料的是,我们发现高酪氨酸浓度会促进早期表型向间充质样或衰老样表型转变,并阻止具有分化特征的黑色素瘤细胞培养物的建立,我们发现这些特征在人类临床活检中经常出现。此外,在这些培养条件下出现的侵袭性表型似乎是不可逆的,并且如预期的那样,与对 MAPKi 的内在抗性有关。与此形成鲜明对比的是,分化的黑色素瘤细胞培养物在低酪氨酸培养基中增殖时保留了它们的表型,更重要的是它们的表型可塑性,这是黑色素瘤细胞的一个关键特征。总之,我们的研究结果强调了在低酪氨酸培养基中培养黑色素瘤细胞的重要性,以保持其表型的起源身份和细胞可塑性。
当今使用计算机硬件和软件的脑机器化的机器化范围从脑 - 计算机接口(BCIS)到硅的视觉上传到硅的范围,后者是针对超人类未来的。重新发现了人类主义的概念,以形成后人类的观点,并将这些方法与超人类主义的轨迹进行对比,我探索了真实性和神经技术发展的视觉的相互作用,我将其称为Technobrainbodies-Inturanbodies Inturantures。在交叉分析中,我研究了基于现代神经生物学决定论的概念,由神经科学研究和神经技术发展带来的超人类视觉的嵌入和合法化。BCI研究与发展的相连轨迹以及超人类主义的视觉使截舌的铭文永存,并带来产生歧视作用的危险。这最终以规范能力被视为与竞争的融合,成功,白人男性化的技术脑的冲突。但是,我的更深入的分析也使最近的BCI研发中的位移可以表征:从“思想翻译”到情感条件,从BCI内的可控性到顽固性,甚至可以打开封闭的环路。这些实现挑战了有关BCI的演员身份和代理机构的观念,并提出了有关相应主题 - 对象关系中的转变的问题。基于这些分析,我研究了神经技术和超人类政府的影响对要改善其生活的问题,并应将其生活排除在这些发展之外。在政治女权主义唯物主义的框架内,我将后人类的概念与我对技术培养基的概念相结合,以设想和讨论一种物质歧视策略,包括情感,社会性,抵抗,抵抗,同情心,同情,文化多样性,种族多样性,多种性别/性别,不及格,使得''在这些机器人期货中预见的固执的技术 - 脑机构和污点。
前列腺癌(PCA)代表了西方国家男性肿瘤死亡率的第二大原因[1]。近年来,已经建立了相当大的效果来确定其发育和进展的分子机制以及定义其治疗方法的新方法[2,3]。在这种情况下,除了规范的体外和体内研究外,还通过利用新的三维(3D)细胞培养技术进行了几项实验,这不仅提供了对PCA生物学的更深入的了解,而且还提供了对PCA药物对成本 /时间 /效力的基本洞察力的基本见解。考虑到这些优势,本评论文章旨在描述现有的3D PCA细胞培养系统,并讨论其在肿瘤建模和药物发现中的关键作用。
三维 (3D) 细胞培养方法已广泛应用于多种细胞类型,包括干细胞,以精确调节细胞生物物理和生化微环境并控制各种细胞信号传导线索。因此,更像体内的微环境得以重现,特别是通过多细胞球体和类器官的形成,这可能产生更有效的疾病机制。最近,CRISPR Cas9 等基因组工程工具扩展了控制基因表达的技术范围,从而用细胞内控制元件补充了外部信号传导线索。因此,CRISPR Cas9 和 3D 细胞培养方法的结合增强了我们对几种疾病表型背后的分子机制的理解,并可能导致开发出可能更快、更有效地进入临床候选的新疗法。此外,使用 CRISPR Cas9 工具来拯救基因使我们更接近将其用作各种退行性疾病的基因治疗工具。在此,我们概述了 CRISPR Cas9 基因组编辑与 3D 球体和类器官细胞培养之间的联系,以更好地了解患者和非患者来源细胞中的疾病进展,并解决了必须克服才能广泛使用的潜在剩余差距。