摘要。背景/目标:肝X受体(LXR)是具有各种功能的核受体,包括调节胆固醇代谢,葡萄糖稳态和炎症。我们先前报道了LXR激活通过诱导细胞胆固醇外排抑制口腔癌细胞的生长,而LXRβ主要在小细胞肺癌(SCLC)组织中表达。SCLC是最具侵略性的癌症之一,并且需要识别有效的治疗靶标分子。因此,我们研究了LXRβ是否可以通过体外实验成为SCLC治疗的有效靶标分子。材料和方法:我们使用细胞活力,BRDU-ELISA,FACS和Western印迹分析评估了LXR激动剂T0901317治疗对SCLC细胞系细胞增殖和凋亡的影响。此外,使用QRT-PCR,Western blot,胆固醇定量测定法和基因组编辑技术阐明了T0901317抑制SCLC细胞增殖的机制。结果:我们表明培养的SCLC细胞表达LXRβ,LXR激动剂抑制了SCLC细胞的增殖,而没有对正常细胞的毒性。此外,LXR激动剂对SCLC细胞的抗肿瘤作用归因于通过LXRβ激活诱导ABCA1,从而导致通过ABCA1的细胞胆固醇外排的增加。结论:LXRβ的激活上调ABCA1的表达,导致癌细胞中的胆固醇消耗。这种机制可能是SCLC的新型目标策略。
前列腺癌是全球最常见的疾病之一。尽管最近在治疗方面取得了进展,但晚期前列腺癌的患者的预后较差,并且该人群的需求很高。了解前列腺癌的分子决定因素和疾病的侵袭性表型可以帮助设计更好的临床试验并改善这些患者的治疗方法。晚期前列腺癌经常改变的途径之一是DNA损伤反应(DDR),包括BRCA1/2的改变和其他同源重组修复(HRR)基因。DDR途径的改变在转移性前列腺癌中尤为普遍。在这篇综述中,我们总结了原发性和晚期前列腺癌中DDR改变的普遍性,并讨论了DDR途径中的变化对DDR基因的侵袭性疾病表型,预后和种系致病性的关联的影响,而DDR基因与患有前列腺癌风险的DDR基因改变了。
DDR由多种途径组成,这些途径感知,信号和对异常DNA的反应。为了促进有效的复制,病毒已经发展为参与甚至调节DDR。在这篇综述中,我们将讨论一组部分不同的病毒以及它们与DDR相互作用以及随后的一些细胞后果相互作用的机制范围。有一个二分法,即DDR既对病毒又有抗病毒既有益。我们还将审查DDR与先天免疫之间的联系。以前认为是不同的细胞功能,较新的研究正在与这些过程联系起来。此外,我们将讨论文献中我们提出的一些差异,可以通过利用更一致的以DDR为重点的测定法来纠正。这样做,我们希望对这些机制和表型在所有病毒中的保守程度上有多广泛地了解。这对人类健康至关重要,因为了解病毒如何操纵DDR为抗病毒疗法提供了一个重要且可处理的靶标。
结果和讨论:我们在非洲和非非洲现代人类中识别了77个DDR基因的1,060个单基DDR PV。非洲和非非洲之间DDR PV的直接比较表明,非洲的非非洲PV中有82.1%不存在。我们进一步鉴定了56个DDR基因的397个单基DDR PVS,在5,031个古人类中,日期为45,045至100年前(BP)(BP)居住在欧亚大陆大陆(BP),因此最新的非洲人类移民的后代发生在50,000年前 - 60,000年前。提及古代DDR PV,我们观察到,在非非洲的397(70.3%)古代DDR PV中,有276个(70.3%)在非非洲和非洲人之间共享了106(26.7%),只有15(3.8%)在非洲人中只有15(3.8%)。我们通过测试BRCA和TP53中的PV(基因组稳定维持中的两个重要基因,在非洲,非非洲和古代人类中)进一步验证了分布模式。我们的研究表明,现代人类中的DDR PV大多是在最新的非洲迁移迁移之后出现的。数据为了解疾病易感性的进化基础,尤其是癌症,现代人类提供了基础。
基因组不稳定性是癌症的核心特征,通常源于 DNA 损伤反应 (DDR) 缺陷或复制压力增加。DDR 缺陷可导致重大的遗传改变,包括基因拷贝数变化、基因重排和突变,这些改变会随着时间的推移而积累,并推动癌细胞的克隆进化。然而,这些脆弱性也为利用 DDR 缺陷的靶向疗法提供了机会,有可能提高治疗效果和患者预后。奥拉帕尼等 PARP 抑制剂的开发显著改善了基于合成致死的 DDR 缺陷癌症(例如 BRCA1 或 BRCA2 突变)的治疗。这一成就促使人们进一步研究在 DDR 通路中确定其他治疗靶点。最近的进展包括开发针对其他关键 DDR 成分(如 DNA-PK、ATM、ATR、Chk1、Chk2 和 Wee1 激酶)的抑制剂。目前的研究重点是通过开发治疗反应的预测生物标记物、分析耐药机制(内在和获得性)以及探索将 DDR 靶向疗法与化疗、放疗和免疫疗法相结合的潜力来优化这些疗法。本文概述了基于 DDR 的靶向抗肿瘤疗法的最新进展及其对未来癌症治疗策略的影响。
相关性。完整性并易患癌症和遗传疾病。然而,绝大多数 DDR 基因突变的功能和临床相关性尚未确定。此外,人类 DDR 基因之间的相互作用网络在很大程度上仍未定义。在我的演讲中,我将讨论我们最近使用 CRISPR 依赖性胞嘧啶碱基编辑筛选的研究,这些研究发现了 DDR 基因中的数千种核苷酸变体,导致 DNA 损伤后细胞适应性发生改变。此外,我将介绍我们使用组合 CRISPR 筛选技术研究 DDR 内的遗传相互作用的工作,这使我们能够识别具有潜在临床相关性的 DDR 基因之间的新型合成致死关系。
摘要:恶性白血病细胞的存活依赖于 DNA 损伤修复 (DDR) 信号传导。使用来自 810 名成人和 500 名儿童急性髓性白血病 (AML) 患者的诊断样本组装了反相蛋白阵列 (RPPA) 数据集,并分别用 412 种和 296 种经过严格验证的抗体进行探测,其中包括检测直接参与 DDR 的蛋白质表达的抗体。无偏层次聚类确定了成人和儿童 AML 中强烈的复发性 DDR 蛋白表达模式。从整体上看,DDR 表达与基因突变状态相关,并且可预测包括总生存期 (OS)、复发率和缓解持续时间 (RD) 在内的结果。在成人患者中,七种 DDR 蛋白可单独预测 RD 或 OS。当将 DDR 蛋白与在不同细胞信号通路中运作的 DDR 相关蛋白一起分析时,这些扩展的分组也对 OS 具有高度的预后性。对接受常规化疗或维奈克拉联合低甲基化剂治疗的患者进行分析后发现,蛋白质簇对每个治疗组中的有利和不利预后存在差异预测。总之,这项研究深入了解了 AML 中不同的 DDR 通路激活情况,并可能有助于指导未来针对 AML 患者的个性化 DDR 靶向疗法。
DNA损伤反应(DDR)对于在挑战性环境中维持基因组完整性至关重要。DDR的调节机制在酵母和人类中已经建立了良好。然而,越来越多的证据支持这样的观念,即植物似乎采用了不同的信号通路,而这些信号通路基本上是未知的。在这里,我们报告了拟南芥(拟南芥)在DDR中与SNC1的修饰符,4相关的复合体亚基5A(MAC5A)的作用。MAC5A突变体中缺乏MAC5A会导致甲基甲磺酸甲酯(MMS),一种DNA损伤诱导剂。与该观察结果一致,MAC5A可以调节DDR基因的替代剪接,以保持对遗传毒性应激的适当反应。有趣的是,MAC5A与26S蛋白酶体(26SP)相互作用,并且其蛋白酶体活动是必需的。MAC核心亚基也参与了MMS诱导的DDR。此外,我们发现MAC5A,MAC核心亚基和26SP可能会协作以通过DDR进行高端诱导的增长抑制作用。总的来说,我们的发现揭示了MAC在MMS诱导的DDR中的关键作用在植物的生长和应激适应性中。
DNA 损伤激活信号通路对于协调多个细胞过程至关重要,必须严格调控这些过程才能维持基因组稳定性。为了提供全面、公正的 DDR 信号通路观点,我们在人类细胞系中进行了 30 次基于荧光激活细胞分选的全基因组 CRISPR 筛选,使用识别不同内源性 DNA 损伤信号蛋白的抗体来识别参与 DNA 损伤反应 (DDR) 的关键调节剂。我们发现蛋白酶体介导的加工是细胞触发喜树碱和依托泊苷诱导的 DDR 信号的早期和先决条件事件。此外,我们还确定 PRMT1 和 PRMT5 是调节 ATM 蛋白水平的调节剂。此外,我们发现 GNB1L 是 DDR 信号的关键调节剂,因为它作为辅助伴侣分子,专门调节 PIKK 蛋白。总的来说,这些筛查为进一步研究 DDR 提供了丰富的资源,可能有助于深入了解针对这些 DDR 通路以改善治疗结果的策略。
BRAF V 600 突变的晚期黑色素瘤对 BRAF/MEK 抑制剂治疗的耐药性仍然是限制患者获益的主要障碍。包括细胞外基质 (ECM) 在内的微环境成分可以支持肿瘤细胞适应和对靶向治疗的耐受性;然而,其潜在机制仍然知之甚少。在这里,我们研究了黑色素瘤中对 BRAF V 600 通路抑制反应的基质介导药物耐药性 (MMDR) 过程。我们证明成纤维细胞衍生的 ECM 的物理和结构线索消除了对 BRAF/MEK 抑制的抗增殖反应。MMDR 由药物诱导的磷酸化 DDR 1 和 DDR 2(两种酪氨酸激酶胶原受体)的线性聚集介导。DDR 1 和 DDR 2 的消耗和药理学靶向可克服 ECM 介导的对 BRAF 靶向治疗的耐药性。在异种移植中,用伊马替尼靶向 DDR 可增强 BRAF 抑制剂的疗效,抵消药物诱导的胶原重塑,并延缓肿瘤复发。从机制上讲,DDR 依赖性 MMDR 促进了可靶向的促生存 NIK/IKK a /NF- j B 2 通路。这些发现揭示了富含胶原蛋白的基质和 DDR 在肿瘤细胞适应和抵抗中的新作用。它们还为环境介导的耐药性提供了重要见解,并为在黑色素瘤中联合靶向 DDR 信号传导和靶向治疗提供了临床前理论依据。