要求 • 覆盖范围广、重访时间短 • 高辐射分辨率和几何分辨率 • 新型数据产品: - 高精度 DEM - 3-D 体积图像(生物量、土壤、冰……) - 动态地图(洋流、交通……) - … • 高可靠性和成本效益
要求 • 覆盖范围广、重访时间短 • 高辐射分辨率和几何分辨率 • 新型数据产品: - 高精度 DEM - 3-D 体积图像(生物量、土壤、冰……) - 动态地图(洋流、交通……) - … • 高可靠性和成本效益
简介。对计划地形的高保真理解对于准确的表面条件建模是必要的。对于潜在的未来人类和机器人勘探领域,例如即将到来的阿耳emis派任务的候选降落地点。LOLA提供的 1高度测量测量已用于在月球杆附近的Moder-Ate分辨率上开发地形模型,例如2米 /小像素(MPP)。 但是,在许多感兴趣的地区,需要高分辨率的托图。 分析方法,例如形状从阴影(SFS),3,4,以高分辨率光学图像的形式包含上下文信息,例如由月球侦察轨道轨道窄角(LRO NAC)所提供的信息。 sfs将先验的低分辨率DEM作为焦油分辨率的共同注册图像作为输入,其中每个图像都从其他方向从太阳照亮。 这种方法提供了统计保证和输出高分辨率DEM的可解释性,但它们在计算上很昂贵,需要人类输入(例如参数微调)。 因此,适用于大面积很麻烦。 我们实施了基于生成-AI的超分辨率工具,以在月球上开发准确的高分辨率DEM。 尤其是,我们将图像到图像形象的schodinger桥(SB)方法5应用于条件性一代设置,该设置在超分辨率任务中取得了很大的成功。 我们的图像到图像SB Trans-在考虑一组操作图像的同时,形成了向后高分辨率DEM的先验样品(低分辨率DEM)。1高度测量测量已用于在月球杆附近的Moder-Ate分辨率上开发地形模型,例如2米 /小像素(MPP)。但是,在许多感兴趣的地区,需要高分辨率的托图。分析方法,例如形状从阴影(SFS),3,4,以高分辨率光学图像的形式包含上下文信息,例如由月球侦察轨道轨道窄角(LRO NAC)所提供的信息。sfs将先验的低分辨率DEM作为焦油分辨率的共同注册图像作为输入,其中每个图像都从其他方向从太阳照亮。这种方法提供了统计保证和输出高分辨率DEM的可解释性,但它们在计算上很昂贵,需要人类输入(例如参数微调)。因此,适用于大面积很麻烦。我们实施了基于生成-AI的超分辨率工具,以在月球上开发准确的高分辨率DEM。尤其是,我们将图像到图像形象的schodinger桥(SB)方法5应用于条件性一代设置,该设置在超分辨率任务中取得了很大的成功。我们的图像到图像SB Trans-在考虑一组操作图像的同时,形成了向后高分辨率DEM的先验样品(低分辨率DEM)。生成的AI方法具有比分析方法更有效地扩展到更大的输入的潜力,并且可以超越培训数据集。
确定积雪深度的空间分布不仅对于与饮用水供应或水力发电相关的民用目的至关重要,而且对于雪、水文和环境研究中的多种应用也至关重要。然而,积雪深度在空间和时间上都变化很大。因此,传统和最先进的积雪监测方法并不总是能够捕捉到如此高的空间变化,除非采用非常昂贵的解决方案。在这项研究中,我们提出了一种新方法,旨在通过利用地球科学研究环境中的两种低成本和新兴技术来提出解决问题的方法;运动结构 (SfM) 数字摄影测量和无人机 (UAV)。这些技术相结合的优点在于,它们可以以较低的运行成本和较少的工作量提供大面积的精确高分辨率数字高程模型 (DEM)。所提出的方法将利用这一资产,在地理参考雪面(雪 DEM)与其相应的底层地形(地形 DEM)之间进行减法,从而提供雪深分布图。为了在小规模上测试所提出方法的可行性和效率,在上述背景下调查了六个不同的积雪区域。这些区域的面积从 900 到 51,000 平方米不等,其中两个位于斯瓦尔巴群岛朗伊尔城附近,四个位于西格陵兰岛安登峡湾附近。调查在雪面类型、底层地形复杂性、亮度条件和所用设备方面有所不同,以评估该方法的适用范围。结果呈现为六张雪深分布图,并通过比较估计的雪深和一组质量控制点上探测到的雪深来验证。根据区域不同,探测到的雪深与估计的雪深之间的平均差异从最佳情况的 0.01 米到最坏情况的 0.19 米不等,同时空间分辨率范围从 0.06 到 0.1 米。彻底调查了每种情况的误差源,并评估了通过使用雪面和相应的底层地形中可见的公共地面控制点对 DEM 进行地理配准可以进一步减轻误差。在进行的测试中,该方法没有受到该区域的任何特定表面特征或任何调查条件的特别限制。尽管是在小规模区域进行测试,但通过考虑这些初步结果,该方法有可能成为一种简化程序,允许重复绘制雪动态图,同时降低运行成本,并且不会放弃获得高精度和高分辨率。
摘要:本研究采用基于知识的模糊分类方法,通过分析从数字高程模型 (DEM) 获得的形态参数 (地形属性) 对城市地区可能的土壤地貌进行分类。以柏林市区为例,比较了两种不同分辨率的 DEM 在寻找地貌、土壤类型之间的特定关系以及这些 DEM 用于土壤制图的适用性方面的潜力。几乎所有的地形参数都是从高分辨率光探测和测距 (LiDAR)-DEM (1 m) 和先进星载热发射和反射辐射计 (ASTER)-DEM (30 m) 获得的,这些参数被用作对选定研究区域内地貌进行分类的阈值,总面积约为 39.40 km 2 。通过将地面点样本作为地面真实数据与分类结果进行比较,评估了两种分类的准确性。基于 LiDAR-DEM 的分类在将城市地区的地貌分类为地貌(子)类别方面表现出良好的效果。总体准确度为 93%,这说明该分类结果令人满意。而基于 ASTER-DEM 的分类准确度为 70%。基于 ASTER-DEM 的分类较为粗糙,需要与土壤形成因素直接相关的更多详细信息来提取地貌参数。在对地貌进行分类时,使用 LiDAR-DEM 分类的重要性尤为明显
受潮汐影响的沿海地区的水资源管理需要定期使用高分辨率和精确的数字高程模型 (DEM)。由于需要勘测大面积区域,因此通常使用远程传感器。由于其非常动态的行为,只有对应于低潮前后 +/ − 1 小时的极短时间窗口可用于对潮滩区域进行远程数据采集。因此,机载传感器比星载传感器更具吸引力,因为它们在采集时间方面具有灵活性。此外,高分辨率机载 SAR 系统(如 DLR 的 F-SAR)比传统的机载激光扫描仪 (ALS) 覆盖范围更广,对天气条件的依赖性更小,而传统的机载激光扫描仪 (ALS) 通常限制在 <500 m 的扫描带宽度。在过去的几十年中,使用 SAR,特别是跨轨干涉 SAR (InSAR) 数据监测潮滩一直是许多研究的主题。例如,在 [ 1 ] 中,作者成功地利用 AeS-1 X 波段单程机载干涉仪的数据为德国瓦登海的潮间带生成了 DEM。生成的 DEM 是使用 2.4 m 的跨轨基线获得的,分辨率为 5 m,与地面控制点的比较显示标准差小于 10 cm。在 [ 2 ] 中,从 ERS-1/2 复杂 SAR 图像中提取的海岸线用于生成分辨率约为 12.5 m 的 DEM。作者报告说,获得的地形图与前面提到的 AeS-1 InSAR DEM 之间存在良好的一致性。考虑的时间基线在 [ 3 ] 中,作者使用后向散射模型和相干性分析讨论了使用重复干涉测量法在潮滩上生成 DEM 的有利条件。在该研究之后,在 [ 4 ] 中报告了使用 ERS-1/2 对的结果,其中强调了使用星载重复传感器获取高相干性数据的挑战。[ 5 ] 中的作者讨论了通过星载重复干涉 InSAR 监测潮滩的可行性,建议使用具有较大横向基线和短时间基线的采集来应对高场景动态。
摘要。随着运动结构 (SfM) 和密集图像匹配 (如多视角立体成像 (MVS)) 等计算机视觉算法的最新发展,基于照片的表面重建正迅速成为地球科学许多领域中激光雷达 (光检测和测距) 的替代勘测技术。这项研究的目的是测试地面 SfM-MVS 方法是否适用于计算 2.1 平方公里冰川的大地质量平衡以及探测位于意大利东部阿尔卑斯山的邻近活岩冰川的表面位移。这些照片是在 2013 年和 2014 年使用数字消费级相机在单日实地调查中拍摄的。机载激光扫描 (ALS,也称为机载激光雷达) 数据被用作基准,以估计摄影测量数字高程模型 (DEM) 的准确性和该方法的可靠性。 SfM-MVS 方法能够重建高质量的 DEM,所提供的冰川和冰缘过程估计值与使用 ALS 可实现的估计值类似。在冰川外的稳定基岩区域,2013 年和 2014 年 SfM-MVS DEM 与 ALS DEM 之间的高程差的平均值和标准差分别为 − 0.42 ± 1.72 和 0.03 ± 0.74 m。两种方法下冰川高程损失和增益的总体模式相似,范围在 − 5.53 至 + 3.48 m 之间。在岩石冰川区域,高程差小于
利用 LiDAR 数据生成高分辨率 DEM 用于水资源管理 ¹Liu, X.¹J.Peterson 和 ¹Z.Zhang 地理信息系统中心,莫纳什大学地理与环境科学学院,惠灵顿路,克莱顿,维多利亚州 3800,澳大利亚 电子邮件:Xiaoye.Liu@arts.monash.edu.au 关键词:水资源;LiDAR;DEM;排水网络;集水区。扩展摘要 地形模式在确定水资源性质和相关水文建模方面发挥着重要作用。数字高程模型 (DEM) 提供了一种表示地表的有效方法,可以自动直接提取水文特征 (Garbrecht and Martz, 1999),与基于地形图、实地调查或摄影解释的传统方法相比,它在处理效率、成本效益和准确性评估方面具有优势。然而,研究人员发现,DEM 的质量和分辨率会影响任何提取的水文特征的准确性 (Kenward et al., 2000)。因此,必须根据水文特征的性质和应用来指定 DEM 的质量和分辨率。澳大利亚维多利亚州最常用的 DEM 是维多利亚州土地可持续发展和环境部提供的 Vicmap Elevation。该模型主要使用现有 1:25,000 比例尺等高线图和数字立体捕捉的高程数据生成,提供水平分辨率为 20 米的全州地形表面表示。声称的垂直和水平标准偏差分别为 5 米和 10 米(Land-Victoria,2002 年)。在最坏情况下,水平误差可能高达 ±30 米。虽然高分辨率立体航拍照片提供了一种生成高分辨率 DEM 的潜在方法,但在当前流行的商业摄影测量软件所用技术的限制下,只能直接生成除 DEM 之外的 DSM(数字表面模型)。手动删除非地面数据以将 DSM 转换为 DEM 非常耗时。因此,使用立体航拍照片以现有的技术来生成DEM并不是一个准确且经济的方法。
摘要 对新西兰北阿什伯顿河清澈浅水砾石河段的数字摄影测量测量所获得的数字高程模型 (DEM) 质量进行了评估。使用自动校正程序处理与水下地形相关的点误差,该程序基于对空气-水界面折射的校正。还考虑了收集参数变化对 DEM 质量的影响。使用独立数据集评估水下地形 DEM 的准确度和精度。结果表明,如果将数字摄影测量与图像分析技术结合使用,可以成功用于提取砾石河床的高分辨率 DEM,但水下地形表示的质量在很大程度上取决于图像采集时的水深。有人提出,数字摄影测量表面与“实际”河床表面(由地面测量确定)之间的差异将在一定程度上反映定义砾石覆盖表面真实高程的问题。数字摄影测量测量通常会看到砾石鹅卵石的顶部,而手持测量人员则倾向于记录石头之间的高程。还讨论了误差的命名法,并得出结论,所采用的表面质量测量应与 DEM 的应用一致。
摘要 过度的河岸侵蚀是许多河流系统中细沉积物和相关营养物的重要来源,同时也对基础设施构成威胁。使用高分辨率地形数据进行地貌变化检测是监测河流沿线河岸侵蚀程度的有效方法。无人机系统 (UAS) 和运动结构 (SfM) 摄影测量技术的最新进展使得获取高分辨率地形数据成为可能,这也是本研究中使用的方法。为了评估基于 UAS 的摄影测量对河岸侵蚀监测的有效性,一架固定翼 UAS 在两年内多次被部署在美国东北部佛蒙特州中部的 20 公里河流走廊进行勘测。数字高程模型 (DEM) 和差异 DEM 可以量化发生明显侵蚀的勘测区域中选定部分的体积变化。结果表明,只要调查是在早春(融雪后但夏季植被生长之前)进行的,UAS 就能够以高分辨率收集高质量的地形数据,即使是在植被茂密的河流走廊沿线。使用 UAS 对河岸运动的长期估计与之前收集的机载激光雷达调查结果相比具有良好的可比性,并且可以可靠地量化河流沿岸的重大地貌变化。