Don Figer 研究大质量恒星、年轻星团和银河系中心。Gregory Howland 在量子光的空间自由度中创造、操纵和检测量子力学现象。Parsian Mohseni 使用固态物理、材料特性和化学开发微型半导体结构。Zoran Ninkov 研究和开发用于天文学、遥感和其他应用的仪器和探测器。Dorin Patru 将高效的数字数据处理架构应用于航空航天技术,包括低温图像传感器和立方体卫星。Michael Zemcov 使用新型地面和亚轨道观测平台研究早期宇宙的物理学。Jing Zhang 设计了高效的 III-Nitride 和 GaO 半导体光子、光电和电子设备。
网络虚假信息已成为学术界研究的一大焦点,也是记者和广大公众关注的一大原因。尽管多种形式的虚假信息已经在网上盛行,但一些评论员担心,新技术——尤其是用于生成深度伪造视频的技术——将加剧虚假信息问题 (Fallis, 2021 ; Foer, 2018 ; Rini, 2020 ; Warzel, 2018 )。人们很自然地会认为,既然用于欺骗的新技术是问题,那么用于检测的新技术就是解决方案。因此,人们已经投入了大量的心思和投资来研究用于检测深度伪造和其他形式的虚假信息的技术。在本文中,我认为,解决深度伪造所带来问题的技术解决方案非常有限。在简要概述了深度伪造如何威胁
警告。访问本论文内容的前提是接受以下知识共享许可规定的使用条款:https://creativecommons.org/licenses/?lang=ca
摘要:随着对在各个领域的单光子水平检测光的需求不断增长,研究人员致力于通过使用多种方法来优化超导单光子检测器(SSPD)的性能。但是,可见光的输入光耦合在有效SSPD的发展中仍然是一个挑战。为了克服这些局限性,我们开发了一种新型系统,该系统将NBN超导微孔光子检测器(SMPD)与Gap-plasmon reso-nators整合在一起,以将光子检测效率提高到98%,同时将所有检测器性能特征(例如偏振性无敏化)保留。等离子SMPD表现出热带效应,与在9 K(〜0.64 t C)下运行的可见范围内产生非线性光响应,与在CW Illumination CW下的原始SMPD相比,声子 - 电子相互作用因子(γ)增加了233倍。这些发现为在可见的波长下的量子信息处理,量子光学元件,成像和感测等领域提供了超敏感单光子检测的新机会。关键字:单光子检测,可见光,间隙 - 平面共振,超导光电探测器,NBN,非线性光载质
在当今数据驱动的教育技术中,算法对学生的体验和成果产生了关键的影响。因此,采取措施最小化偏见,避免永久性或加剧不平等至关重要。在本文中,我们研究了两个学习分析模式中存在算法偏见的程度:基于贝叶斯知识追踪(BKT)和粗心大意探测器的知识估计。使用来自美国各地使用的学习平台的数据,我们探索了三种不同的方法,探索算法偏差:1)分析样本中每个人口统计组的模型的表现,2)比较这些人口统计学的相互群体的性能,以及这些模型在使用特定组的模型中是否可以在训练过程中进行培训,以观察到训练的过程。我们的实验性研究表明,这些模型的性能在所有人口统计和交叉组中都接近平等。这些发现建立了验证交叉组的教育算法的可行性,并表明这些算法可以公平地用于大规模的不同学生。
III-V胶体量子点(CQD)在红外光检测中引起了人们的关注,CQDS合成和表面工程的最新发展提高了性能。在这里,这项工作调查了光电探测器的稳定性,发现从电荷传输层(CTL)到CQDS活性层的锌离子的差异会增加其中的陷阱密度,从而导致操作过程中快速且不可逆转的性能损失。在防止这种情况下,这项工作引入了CQD和ZnO层之间的有机阻塞层。但是这些对设备性能产生了负面影响。然后,该设备可以使用C60:BCP作为顶部电子传输层(ETL),以实现良好的形态和过程兼容性,并选择NiO X作为底部孔传输层(HTL)。基于Nio X的第一轮设备显示出有效的光响应,但由于针孔引起的高泄漏电流和低敞开电路(VOC)。这项工作介绍了Poly [Bis(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)(PTAA),它使用Nio X NC形成杂种HTL,这是一种减少针孔形成,界面陷阱密度,界面陷阱密度和双肌发射重组,增强载体,增强的载体。在1 V施加偏置的970 nm处,光电探测器在970 nm处实现53%的外部量子效率(EQE),并且在连续照明操作的19小时后,它们保持了95%的初始性能的95%。光电电视机在80天的架子存储后保留了80%以上的性能。
III-V 胶体量子点 (CQD) 在红外光电探测中备受关注,CQD 合成和表面工程的最新发展提高了性能。本文研究了光电探测器的稳定性,发现锌离子从电荷传输层 (CTL) 扩散到 CQD 活性层会增加其中的陷阱密度,导致操作过程中性能快速且不可逆地下降。为了防止这种情况发生,本文在 CQD 和 ZnO 层之间引入了有机阻挡层;但这会对设备性能产生负面影响。然后,该设备允许使用 C60:BCP 作为顶部电子传输层 (ETL) 以获得良好的形态和工艺兼容性,并选择 NiO X 作为底部空穴传输层 (HTL)。第一轮基于 NiO X 的设备表现出高效的光响应,但由于针孔而存在高漏电流和低开路电压 (Voc)。本研究将聚[双(4-苯基)(2,4,6-三甲基苯基)胺] (PTAA) 与 NiO X NC 结合形成混合 HTL,这种添加可减少针孔形成、界面陷阱密度和双分子复合,从而增强载流子收集。光电探测器在施加 1 V 偏压时在 970 nm 处实现 53% 的外部量子效率 (EQE),并且在连续照明操作 19 小时后仍保持 95% 的初始性能。光电探测器在货架储存 80 天后仍保持 80% 以上的性能。
量子密钥分发 (QKD) 在经过验证的用户之间共享安全密钥,通过量子力学的假设实现无条件安全性,不同于以计算复杂性为整个加密系统基础的经典密码学。许多研究团体 [5,6,40] 在现实场景下进行了安全测试和详细分析,并得出结论,源特性(例如单个或纠缠光子)是任何量子密码系统性能的决定因素之一。量子密钥分发于 1992 年首次实现 [1],并在 [16-18, 20, 40] 中进行了所需的改进。量子技术如今已部署在许多工业应用中 [25]。1550 nm 的波长是量子通信实际部署的理想波长,因为与损耗更高的 1300 nm 波长(0.35 dB/km)相比,它的损耗更小(0.2 dB/km)。有各种基于单光子的量子密钥分发系统。
量子密钥分布(QKD)在身份验证的用户中共享安全的秘密密钥,在这些用户中,量子力学的假设实现了无条件的安全性,并且与经典加密术相关,其中计算复杂性是整个密码系统的基础。许多研究社区[5,6,40]在现实情况下进行了安全测试和详细的分析,并得出结论,诸如单个或纠缠光子之类的源特征是任何量子结晶系统的性能决定因素之一。量子密钥分布于1992年第一次实施[1],并在[16-18、20、40]中开发了所需的改进。如今,Quantum Technologies已在许多工业应用中部署[25]。在1550 nm处的波长是量子通信的实际部署所需的波长,因为它提供了更少的损失(0.2 dB/km),而1300 nm波长则损失了(0.35 db/km)。有各种基于单个光子