当今的安全部门和用于检查过境人员的金属探测器的日益严格的规定要求设备具有最高的操作和功能性能。凭借 50 多年的金属探测器设计和制造经验,CEIA 开发了一系列具有卓越灵敏度和吞吐量的设备。
太初有光。光是美好的。此后不久,人们开始寻求对光的全面理解。虽然出版记录一开始有些零散,但公元前五世纪,希腊哲学家恩培多克勒得出结论,光由从眼睛发出的光线组成。欧几里得在其关于光传播的经典著作《光学》中,使用今天可能被称为局部现实主义的论证对这一观点提出了质疑。欧几里得假设光线是由外部光源发出的。但直到公元 1000 年伊本·海赛姆 (Ibn al-Haytham) 提出这一观点后,这一观点才被确立为科学依据。17 世纪的笛卡尔将光本身的特性描述为“压力”,它通过空间从光源传输到眼睛(探测器)。这个想法后来由惠更斯和胡克发展成为光的波动理论。大约在同一时间,伽森狄提出了相反的观点,即光是一种粒子,牛顿接受了这一观点并进一步发展了这一观点。杨氏 1803 年的双缝实验和菲涅尔的衍射实验普遍认为,光作为粒子和波的不同视角已经得到解决,有利于波动图像。在 19 世纪 60 年代,麦克斯韦方程以一种优雅而令人满意的方式进一步证实了这一结论:预测以光速传播的偏振电磁波。1897 年,J.J. Thomson 发现离散粒子携带负电荷在真空中移动,电磁学的波与流体观由此出现问题。随后在 1900 年,普朗克在“绝望之举”中援引了量化的电磁能量束来推导黑体辐射定律 [2, 3],这一步不仅包含了玻尔兹曼在统计力学中的先前猜想,而且与传统理解背道而驰。它最初被认为是推导的产物,后来得到纠正,但爱因斯坦在 1905 年对光电效应的描述 [4] 中更加认真地对待光量子理论。随后在 1913 年,玻尔援引了能量和角动量的量化来解释在氢-巴尔末系列中观察到的离散光谱发射线。1924 年,德布罗意基于这些想法假设不仅光,而且物质粒子也具有波状特性,这一假设彻底失败了。随后出现了量子光,这真是太棒了。随后,海森堡、玻恩、薛定谔、泡利和狄拉克等一系列发现和进步建立了量子力学的框架。就本书而言,1927 年,狄拉克将电磁场量化,有效地发展了光理论,涵盖了引发整个革命的物理现象。20 世纪 30 年代,首次在单光子水平上直接探测到光。20 世纪 50 年代原子级联光子对源 [5] 的出现及其在 20 世纪 70 年代和 80 年代的使用 [6–9] 使第一个单光子源问世。
人们普遍认为,颗粒大小分布各不相同,从燃烧火焰附近占主导地位的亚微米直径颗粒,到阴燃烟雾特有的一个或多个数量级的颗粒。实际的颗粒大小分布取决于许多其他变量,包括燃料及其物理组成、氧气的可用性(包括空气供应和火气排放)以及其他环境条件,尤其是湿度。此外,颗粒大小分布并不是恒定的;随着火气冷却,亚微米颗粒会聚集,而非常大的颗粒会沉淀。换句话说,随着烟雾远离火源,颗粒大小分布显示较小颗粒相对减少。在大多数火灾中都大量存在的水蒸气在充分冷却后会凝结形成雾颗粒——这种现象经常出现在高烟囱上方。由于水凝结物与其他烟雾颗粒混合时基本上是透明的,因此可以预期它会将混合物的颜色变为更浅的颜色。
一个典型的电离室由两个电荷板和一个放射源(通常为Americium 241)组成,用于电离板之间的空气。(见图1)放射性源散发出与空气分子一起散发并移出电子的颗粒。由于分子损失电子,它们会变成正带的离子。随着其他分子获得电子的产生,它们变成负电荷的离子。创建了相等数量的正离子和负离子。带正电的离子被带负电荷的电板吸引,而带负电荷的离子被带带正电荷的板吸引。(见图2.)这会产生一个小电离电流,可以通过连接到板的电路(检测器中的“正常”条件)来测量。
早期的 PXSII 电子设备具有单独的前置放大器板和 ADC/FPGA 板。已在 CHESS、INFUSE、5x 上成功飞行,但体积庞大且很重,对于 50mm 探测器来说功耗为 25w。我们正在实施 Cross Strip 处理电子设备的 ASIC 版本 - GRAPH。这将电荷敏感放大器 (CSA) 和快速 ADC 实现到单个设备中,46mW/通道,对于 50mm XS 来说 ~7.4W = (2.4W + FPGA 功耗),对于 100mm XS 来说 ~15W。它已经制作了原型,正在进行功能测试,即将用于处理 50mm XS 探测器上的 XY 光子事件。
常规的超导电子[1]依赖于超导电线和不同类型的弱环节的超电流和准粒子电流转移的相结合。这些组合可以实现各种功能性IES,例如磁力测定法[2],电流或电压放大器[3],电压标准标准[4],以及基于电阻[5]的检测器或依赖于系统的非平衡状态的电感[6]。与他们的半导体库型相比,超导电子设备缺乏基本元素:非二极管设备,例如二极管或热电元素。不存在非股骨能力可以归因于超导状态的内在电子 - 孔对称性。然而,这种对称性可以使用磁和超导元件的组合[7,8],从原则上讲,它可以实现强大的非重生或功绩的热电图。这些现象可用于创建超导旋转隧道二极管[9],用于超导逻辑和低温记忆的构件,或诸如超导向器 - forromagnet热磁性检测器(Suptrops-Inctife in Astrackect in Astrocke in Astrops-Ickmicys)的新颖类型的检测类型,例如超过forromagnet theroeecnet theroelec-teric tric检测器[10] ],例如,在安全成像中使用了Terahertz-radadiation感测[12]。非常明显,在SFTED中,吸收的辐射直接生成所需的测量信号,而无需单独的偏置电流或电压。
•壁挂式探测器必须位于天花板(或制造商安装说明中规定)的区域不超过12英寸,而不少于4”的区域。•天花板安装的探测器应距离拱形天花板的侧壁或峰值不超过4英寸(或制造商的安装说明中的规定)。•探测器应远离窗户和外门。•探测器应安装在内壁上。•烟雾探测器不得在从门到厨房或装有淋浴或浴缸的浴室的36英寸水平路径中安装。•烟雾探测器不得在强迫空气加热或冷却系统的电源登记处安装在36英寸的水平路径中,并且不得安装在这些寄存器的直接气流外。•烟雾探测器不得从天花板悬架(桨)风扇的刀片尖端的36英寸水平路径内安装。电池应每年更换一次。记住更换电池的一种方法是,当您将时钟设置为前方或返回时,以节省日光。大多数烟雾探测器在电池低时会发出呼气。最好按测试按钮并定期手动检查它们。烟雾探测器的预期寿命约为10年,即使在测试时听起来也是如此。制造日期应在检测器的背面指示。如果没有明显的日期,则应假定检测器超出了预期寿命,应更换。**一个单独的住宅单元应在上面指定的位置配备烟雾探测器:
X射线成像是一种利用X射线的技术,可以通过平面X射线探测器揭示物质的内部结构,具有明显的先进的科学研究和现代社会。通常,间接平面X射线检测器通过闪烁器将X射线转换为可见的光子,而直接平面X射线检测器将X射线转换为通过半导体转换为电荷载体。随着对X射线成像应用的不断增长的需求,达到较低的辐射剂量和较高的空间分辨率是下一代平面X射线探测器的主要目标。尤其是,直接平面X射线探测器具有高空间分辨率,因为电荷载体沿着电场移动,几乎没有信号串扰,这对于此野心是最佳的。然而,对符合X射线检测的所有先决条件的出色半导体的追求,并且可以很容易地与Planar X射线检测器的读取电子设备集成在一起仍然是一项极具挑战性的努力。