塑料闪烁体 ...................................................................................................................................................................................... p. 6 大体积塑料闪烁体和组件 ...................................................................................................................... p. 7 BETA 闪烁体 ...................................................................................................................................................................................... p. 8 用于粒子和高能物理的闪烁体 ...................................................................................................... p. 9
由于其无与伦比的定时分辨率和量子效率,超导纳米线单光子探测器(SNSPD)已成为Quantum Optics的主要技术。SNSPD可以以高于5 t的磁场的高速率以极高的检测效率运行,而深色计数速率接近零。效果,以新型的超导电子设备作为混合低温性驱动器读取结构,以开发低功率的冷冻量读数ASIC。由于纳米线是核和粒子物理领域中相对较新的技术,因此拟议的研发计划将研究超导纳米线传感器,超导电子设备以及原型Crocecmos Front-End End End ASIC的辐射硬度。我们将在高背景辐射环境中运行时测试这些设备的性能。我们还将研究暴露于强烈的电子,中子和伽马辐射来源的超级传导设备的辐射硬度,以识别传感器的失效模式,否则,预计会很难辐射。
基于对少量原子的操纵或超低温下产生的量子效应的各种高灵敏度技术的开发,导致了大量量子器件的迅速普及,其中许多现在开始实现商业应用。同时,这些器件依靠从一个量子态到另一个量子态的离散状态变化,具有极高的灵敏度,使它们成为探测假定的超轻粒子或场与量子器件本身之间非常弱的相互作用的理想探测器。这导致它们在低能粒子物理领域得到广泛应用,以及近年来对与轴子、ALP 和许多其他暗物质候选者相关的低能相空间的快速探索(许多评论,包括 [1-4],都涵盖了这些应用)。这种敏感性似乎使这些设备不适合高能物理应用,因为高能物理应用的检测机制主要依赖于通过粒子与物质相互作用的准连续效应来检测和重建单个粒子的属性,将相互作用粒子对探测器主体原子进行多次电离的连续过程所沉积的电荷积分。要形成一个可以与热和统计波动区分开来的可用信号,需要进行大量这样的电离过程。此外,现有的探测器系列已经非常适合高分辨率跟踪、量热或粒子识别。在本文中,我们讨论了一些量子设备或系统,在这些量子设备或系统中,量子效应发挥了重要作用,以期将它们应用于粒子跟踪、粒子识别或量热领域。我们特别关注那些可能产生目前难以获得的信息的应用,或者现有技术的某些边界条件或
正如在太阳能电池制备中大热的铅基钙钛矿一样,铋基钙钛矿在直接X射线检测中也表现出了优异的性能,尤其是Cs 3 Bi 2 I 9 单晶(SC)。但与铅卤化物钙钛矿相比,Cs 3 Bi 2 I 9 SC在X射线检测应用方面的一个挑战是难以制备大尺寸和高质量的SC。因此,如何获得大面积高质量的晶片也与Cs 3 Bi 2 I 9 生长方法研究一样重要。这里,使用不同的反溶剂制备多晶粉末,采用反溶剂沉淀法(A),作为对照,还采用高能球磨法(B)制备多晶粉末。制备的两种Cs 3 Bi 2 I 9 晶片的微应变为1.21 × 10 −3 ,电阻率为5.13 × 10 8 Ω·cm ,微应变为1.21 × 10 −3 ,电阻率为2.21 × 10 9 Ω·cm 。基于高质量Cs 3 Bi 2 I 9 晶片的X射线探测器具有良好的剂量率线性度,灵敏度为588 µC∙Gy air s −1 ∙cm −2 ,检测限(LoD)为76 nGy air ∙s −1 。
Fischione 3000 型 ADF 探测器闪烁体:钇铝钙钛矿晶体光导:石英圆柱体,连接到光电倍增管,将光子转换回电流。
由于外部刺激而产生的特性,旨在测量生物电势[6–8]、温度[9]、压力[10]或应变等运动、[11]汗液含量[12–14]或能量收集(热电[15,16]摩擦电[17]和生物燃料电池[18])和存储平台。[19,20]织物具有灵活、舒适和透气的特性,成为开发与人体直接接触的大面积可穿戴设备的理想选择。尽管迄今为止已经实现了大量不同的纺织传感器,但尚未提出纺织电离辐射探测器,主要是因为传统辐射传感材料与织物基材不兼容。近年来,由于从医疗应用到民用安全,现代社会许多方面对电离辐射的使用相对增加,开发创新功能材料和低成本电离辐射检测技术已成为迫切需要。特别是在危险环境中,例如,用于医疗人员和患者以及太空任务的机组人员,对柔性和可穿戴的创新剂量计的需求很高。基于无机材料的商用个人剂量计和诊断探测器(例如,用于剂量计的硅基固态设备、用于大面积平板的 a-Si、a-Se 或聚镉锌碲化物)笨重、笨重、僵硬,佩戴不舒适。此外,它们很难通过低成本和低技术制造技术在大型像素化矩阵中实现。近年来,人们探索了新一代 X 射线探测器,它们基于有机半导体 [21–23] 和钙钛矿 [24–26],这两类材料允许液相沉积方法,使设备易于扩展到大面积,并可在非常规柔性基板(如薄塑料箔 [27,28] 甚至织物)上实现。 [29–31] 铅卤化物钙钛矿是一种新兴的、很有前途的 X 射线探测材料,这得益于它们极好的电传输特性(即高载流子迁移率和长载流子寿命)、优异的光学特性,以及由于分子结构中存在重原子(如 Br、Pb 或 I)而具有的高电离辐射阻止本领。所有这些特性的结合使得铅卤化物钙钛矿器件在直接探测 X 射线和伽马射线方面表现出色,无论是薄膜 [31] 还是单晶形式。[32–34] 然而,尽管单晶性能优异,但它们仍具有机械刚度,阻碍了其实现
- 室温下盖革模式单光子计数雪崩光电二极管 (SPAD) - 改进的 InGaAs SPAD (GHz – 高 QE) - 单光子计数特性和鉴定 - 电信波长
本文给出了由高能物理研究所设计、中国科学院微电子研究所制备的50 µm 厚低增益雪崩探测器 (LGAD) 传感器的模拟和测试结果。制备了三片晶圆,每片晶圆采用四种不同的增益层注入剂量。制备过程中采用了不同的生产工艺,包括改变 n++ 层注入能量和碳共注入。测试结果表明,从电容-电压特性来看,增益层剂量较高的 IHEP-IME 传感器具有较低的击穿电压和较高的增益层电压,这与 TCAD 模拟结果一致。Beta 测试结果表明,IHEP-IME 传感器在高压下工作时的时间分辨率优于 35ps,辐照前 IHEP-IME 传感器收集的电荷大于 15fC,满足 ATLAS HGTD 项目对传感器辐照前的要求。关键词:低增益雪崩探测器(LGAD),注入剂量,击穿电压,时间分辨率,电荷收集电子邮件地址:zhaomei@ihep.ac.cn (Mei Zhao)
22. “高阻抗、低耗散和超低噪声 HEMT 1K 前端电子器件和读出器,用于未来 RICOCHET 实验的 Cry-oCube 探测器阵列” Jean-Baptiste Filippini - IP2I/IN2P3/CNRS
气态探测器(修改的多线腔室)多层:5-8便携式:〜10-100cm,5-80kg特殊DAQ + RPI低功率。〜4-8W(电子,Highv,Lowv,Fee,Control,DataStorage,...)