由于外部刺激而产生的特性,旨在测量生物电势[6–8]、温度[9]、压力[10]或应变等运动、[11]汗液含量[12–14]或能量收集(热电[15,16]摩擦电[17]和生物燃料电池[18])和存储平台。[19,20]织物具有灵活、舒适和透气的特性,成为开发与人体直接接触的大面积可穿戴设备的理想选择。尽管迄今为止已经实现了大量不同的纺织传感器,但尚未提出纺织电离辐射探测器,主要是因为传统辐射传感材料与织物基材不兼容。近年来,由于从医疗应用到民用安全,现代社会许多方面对电离辐射的使用相对增加,开发创新功能材料和低成本电离辐射检测技术已成为迫切需要。特别是在危险环境中,例如,用于医疗人员和患者以及太空任务的机组人员,对柔性和可穿戴的创新剂量计的需求很高。基于无机材料的商用个人剂量计和诊断探测器(例如,用于剂量计的硅基固态设备、用于大面积平板的 a-Si、a-Se 或聚镉锌碲化物)笨重、笨重、僵硬,佩戴不舒适。此外,它们很难通过低成本和低技术制造技术在大型像素化矩阵中实现。近年来,人们探索了新一代 X 射线探测器,它们基于有机半导体 [21–23] 和钙钛矿 [24–26],这两类材料允许液相沉积方法,使设备易于扩展到大面积,并可在非常规柔性基板(如薄塑料箔 [27,28] 甚至织物)上实现。 [29–31] 铅卤化物钙钛矿是一种新兴的、很有前途的 X 射线探测材料,这得益于它们极好的电传输特性(即高载流子迁移率和长载流子寿命)、优异的光学特性,以及由于分子结构中存在重原子(如 Br、Pb 或 I)而具有的高电离辐射阻止本领。所有这些特性的结合使得铅卤化物钙钛矿器件在直接探测 X 射线和伽马射线方面表现出色,无论是薄膜 [31] 还是单晶形式。[32–34] 然而,尽管单晶性能优异,但它们仍具有机械刚度,阻碍了其实现
主要关键词